Cosmic Spas & Outer Space Mineral Mines


Are NASA and other international space agencies interested in creating colonies on the Moon and various other exotic, cosmic locales? Most certainly. However, not for the nefarious purposes of whisking away the highly educated and financial elite in order to preserve the human race from extinction. What they really want to do is exploit the natural resources of these places.

Humans are a hungry species and their appetites include all sorts of stuff from fruits and vegetables to minerals and ores. Many minerals and ores are not only rare, with few deposits in sundry places around the world, but are also finite in their supply. Once diminished, humans will have to find another source. That’s where asteroids and the Moon come into play.

Asteroids are like one of those grab bags you get as a party favor. You never know what’s inside. Although primarily chunks of ice, tar and dust, they also contain scare minerals and metals. For astronaut mining crews, outer space is full of opportunity, kind of like a mechanic entering an auto junkyard the size of Earth. Best estimates to date believe there are hundreds of thousands of asteroids, some nearly five billion years old, of assorted sizes and shapes from the size of a coffee table to hundreds of miles in diameter (Earth, in comparison, is about 8,000 miles in diameter). With such abundance, if humans can overcome the technological and economical obstacles, we may have a seemingly limitless supply of raw materials available.

The gringa wonders what will happen when that occurs? Will space become filled with flag waving asteroids? Considering even a small asteroid could be valued at many millions of dollars in potential minerals, will countries be zipping about space, hither and yon, planting flags on as many asteroids as possible in a territory game of, “Mine! I found it first!”? The gringa is hoping it will be much more civilized than that.

For mining purposes, asteroid’s are classified according to three groups based on light reflection (spectral) analysis. Since mankind cannot yet land on an asteroid and physically take a geological sample or do so with a robotic satellite, scientists evaluate how light reflects off the surface of an asteroid to determine its primary mineral component.

C-type asteroids are dark and carbon based. They are comprised of clay based minerals that have lots of water trapped within the clay. The gringa thinks these could, perhaps become cosmic spas if we could find a way to generate some kind of thermal reaction within the asteroid. Think of it, “Come visit asteroid XP-247 for its relaxing steam baths and mineralized clay body and facial wraps. Just don’t forget your oxygen mask.”

But what about the carbon and other stuff in the clay? Is that any good for anything? Yep. It makes a garden grow lush, thick and plentiful. C-type asteroids rich in carbon, phosphorous and other elements in the fertilizer spectrum could be very valuable as future garden spots. The gringa can now see the cosmic version of the “Hanging Gardens of Babylon” where visitors can also get a soak in the hot springs and a beautifying and detoxifying mineral rich clay body wrap.

I mean, really, we have plenty of clay and carbon and water here on Earth but surely there will be an eager entrepreneur who will see the same potential. Or do we really have plenty of clay, minerals and water on Earth?

The water reserves could very well come in handy. The gringa can see it now – a gravity beam lassos a water rich C-type asteroid and hauls it near Earth’s atmosphere. It then uses transporter technology that has finally been perfected to zap it through the atmosphere, avoiding a friction filled entry that would evaporate up all that precious water. Then, as it approaches fatefully close to a desert region, just before impact a precision laser beam goes, “ZIP, ZAP, ZOOM!” and a lovely shower of water rains down upon the desert with all the pulverized clay and carbon providing rich fertilizer. The desert is soon a fertile oasis. Hey, it could happen. Stranger things already have.

But NASA thinks the real value of water rich asteroids is in using the resource in outer space. By finding a way to mine the water in flight, crews could save billions of dollars by not having to pack this life-support necessity. Interestingly enough, the very thing that humans need to survive, consisting of two molecules of hydrogen and one of oxygen, are the very elements of rocket fuel. (Wow, humans are 60% rocket fuel, or, water, depending on your perspective!). So, astronauts dock their spaceship at a galactic version of Exxon to fill up the tank and top off the water reserves. And while the service station is checking the engine’s oil level and cabin’s air pressure, the crew is freshening up at the nearby spa. Interesting.

So, C-type asteroids can either be Desert-to-Eden conversion sources, hot spring spas, water wells, or rocket fuel depots. Or all three at the same time.Take your pick.

S-type asteroids shine a little brighter than dark, carbon based C-types. That’s because they are rich in reflective metals like cobalt, iron and nickel. If a mining crew is really lucky they could find one with deposits of rhodium, platinum or gold. Scientists estimate that an asteroid about the size of an average bedroom could be packed with well over one million pounds of metals, a tiny fraction being the exceedingly valuable rare ones. Even if mining crews could extract just one hundred pounds of platinum, at about $1000 an ounce, a $100,000 load of platinum would just be the gravy on top of the wealth accumulated from the remaining predominant minerals.

But it may be the M-class asteroids that wars end up being fought over. The wars for oil that we have raging now could very well become wars for M-class asteroids in the future. These asteroids are expected to contain at least ten times the mineral content of S-types.

To make space mining a reality, the mission has to be profitable. With current missions costing in the hundreds of millions, some even billions, an asteroid would have to be massively rich in raw materials. The other option is to develop technologies that are more economical.

Before any of that even matters, current asteroid knowledge needs to be vastly broadened and fine-tuned. We need cosmic cartographers to accurately map the hundreds of thousands of asteroids in outer space. The world needs space geologists that have the technology and knowledge to analyze what minerals each asteroid actually contains. Young students now, who have an interest in a cosmic career, could really have a geology or cartography degree pay off by landing them their dream job.

NASA’s first effort to test their scientific mettle for determining present mineral resources within an asteroid lie with their OSIRIS-REx mission. The goal of “Origins, Spectral Interpretation, Resource Identification, Security and Regolith Explorer” is to return with a geological sample from asteroid Bennu. It is set to launch in September and arrive at the asteroid almost two years later. If all goes according to plan, Earthlings can expect an authentic piece of Bennu to arrive on planet Earth around 2020. (Of course, the gringa is reminded of her favorite piece of motherly advice given regularly to her children in efforts to cultivate a more relaxed approach to life, “The plan is that nothing goes according to plan.”)

In addition to geological studies of Bennu’s raw materials, asteroid re-direction technologies will also be studied. The spacecraft is scheduled to perform an interesting experiment. It is going to give Bennu a gentle, solar nudge. Scientists want to know if sunlight can be used to affect the path of travel of asteroids. I guess the reasoning is that asteroids are too valuable to simply blast into oblivion if Earth happens to be in the way. They would rather nudge them aside then attempt to exploit the wealth they contain.

The most important goals of the mission, however, are to further the development of space mining technologies. They plan to scrape together a two ounce and 4.4 pound geological sample. The spacecraft will then use its state-of-the-art instruments to map the surface of Bennu and analyze its composition. These are the on-board technologies and their purposes:

  • OVIRS (OSIRIS-REx Visible and Infrared Spectrometer) – analyzes visible and near-infrared light to detect minerals, compounds and chemicals within the asteroid.
  • OTES (OSIRIS-REx Thermal Emission Spectrometer) – analyzes infrared light to detect surface minerals of Bennu, determine surface temperature and map the location of water-rich clay mineral deposits.
  • REx (Regolith X-ray Imaging Spectrometer) – analyzes X-ray aura of Bennu’s surface in sunlight to calculate amounts and locations of elements like: iron, magnesium, silicon and sulfur.

To find out if sunlight can be used as an asteroid diversion technique OVIRS and OTES will combine their abilities to study what is known as the “Yarkovsky effect”. When an asteroid absorbs sunlight much of the heat radiates outward and provides a propelling effect. Observations will be made to see if a “man-made” solar heat saturation could result in changing an asteroid’s trajectory.

Most of what will be recorded by the different spectrometers will only reflect what is on Bennu’s surface and within a shallow depth (about half a millimeter). They are not capable of reaching deep within the asteroid’s core. To get a deeper look the spacecraft has a tool that blows nitrogen gas onto the surface that will force minerals up from a depth of about two inches. Even so, it’s pretty obvious that much about Bennu will remain unknown even if the mission is successful in achieving all of its goals.

But, a successful mission will at least tell the world one thing: can mining asteroid’s work? The gringa believes if great wealth is at stake there will be movers and shakers in this world who will make it work one way or another while pocketing a healthy profit in the process.

Source & Image Credit:  www.nasa.gov

 

 

 

 

 

Advertisements

Travel To Mars & Manic Cats


When the caveman and I head south for an Amazon jungle escape in his homeland of Peru, we first have to endure a six hour flight from Houston. Since we are not made of money, we do not fly first class. And so far, I have yet to find an airline with a cuddle section in coach. Also, because of the horrible pollution in Peru’s capital, Lima, it’s location along the Pacific coastline and it’s coastal desert climate, there are only certain times of day that are suitable for flights because of smog and fog. The airport is active at night. So, getting there is not so bad. We can leave at a decent hour in the afternoon and arrive sometime after dinner. However, I have never been able to find any other flight back to the states that is not scheduled in the red-eye hours. This makes homeward air travel a grouch inducing event.

The gringa’s return trip experience usually goes something like this:

  • 10pm – Arrive at the airport
  • 12am – Settle into my airplane seat
  • 12:30am – Take off and read until I’m sleepy
  • 1:30am – Attempt to go to sleep which involves my travel neck pillow hanging in front to avoid the forward head bob which usually never really works so eventually I dig out a scarf and tie my head to the headrest
  • 2am – After tying my head to the headrest, I now have to pee after all the bending and twisting has tortured my bladder.
  • 2:15am – Re-tie my head to the headrest after returning from the bathroom. Discover I am wide awake. Untie my head and begin to read.
  • 3am – Tie my head to the headrest and try to sleep which involves fits and spurts of dozing off then those little jumps a body makes as you merge into deep REMs, wake up frightfully scared then embarrassed, need to pee again, blah, blah, blah.
  • 5am – Flight attendants come around with breakfast and I give up completely on sleep since now there is food involved.
  • 6am – Arrive in Houston where I am an absolute grouch until I collapse in my bed when I get home.

And that’s a “good” trip. One time we went and the air conditioner vent, those little circular doo-hickies up where the reading lights are that can pivot around? Well, the passenger in front of me had his on full blast and every now and then it would start spitting ice out and the angle was perfect for me getting shot in the eye about every thirty minutes or so. Just long enough for me to let my guard down, thinking that the other time it happened was just a fluke, then, “BAM”, right in the eye again. Oh, boy, I tell ya the gringa was spitting mad.

Then there was the time these three brothers were traveling together and they were all drunk as skunks. They wouldn’t stay in their seats. They would stand up, arms around each other, sing songs in Spanish, sometimes Portuguese, then hug and cry. I don’t know what they were singing about, maybe about their women that left them because they were loud and obnoxious drunks, but, eventually, one of them got sick right in front of the poor lady that was seated by the emergency exit. You how those seats that have all that extra space in front of them in the middle of the cabin? Yeah, he walked right over there and heaved. Then the lady screamed, jumped up, stepped in it, got so upset, tried to yell, gagged, then she puked. The flight attendant’s solution? Scatter a bucket of coffee grounds over it. Yeah, good times.

Which brings the gringa to the hopeful news out of NASA. I’m talking about their groundbreaking laser propulsion system. They are claiming that if the technology works, eventually crews could reach Mars in a matter of days. I’m guessing if that technology was put to use to get me to Peru a trip would be about as fast as Star Trek’s transporter technology. That sounds sensational to the gringa. No more dodging ice pellets or dealing with drunks or tying my head to the headrest and arriving home grumpy as a mad, wet cat.

So how does this laser propulsion business work? Scientists have known for some time how to propel objects at light speed. The reason this is not done with current spacecraft is because they are too heavy. Their weight creates all kinds of complications. Laser propulsion takes liquid fuel cargo out of the picture which drastically reduces the weight making light speed, then, a possibility, or at least a quarter of light speed a possibility. At that rate, a spacecraft could reach Alpha Centauri within 15 years. That’s a star about four light years away.

With that in mind, then, a spacecraft that weighs about 100 kilograms/220 pounds could reach Mars in about six months, give or take a couple of months either way. So, to get serious about space travel, we’ve got to speed up transit time.

The laser propulsion system is called “photonic” propulsion, but laser just seems a word most people immediately can visualize. When I think of laser propulsion, I envision spacecraft zipping through the skies like a flash of light and all the cats on Earth will end up with manic disorders. Many will injure themselves attempting to launch through windows at the laser light displays crisscrossing the skies. There may be troubling and dangerous times ahead for cats and cat lovers. But, heads up to the gringa’s more innovative readers. This could lead to a niche market in cat care products for kitties that are suffering from spacecraft laser related mania.

But, I digress, to get back to how it all works… rather than one giant laser shooting a spacecraft off into the heavens, multiple lasers would propel an aircraft. Multiple amplifiers would then combine the power of the individual laser to create a singular beam powerful enough to propel the craft. And, guess what… the technology already exists! Scientists and researchers only need to develop and test the technology with actual aircraft and spaceships.

Scientists and engineers are very excited because they know this idea will work. They have small amplifiers that are about the size of a school book. What they really want is an array of amplifiers floating in orbit around Earth in a six-square-mile configuration. That’s what it would take to shoot a black-eyed pea to Alpha Centauri. Um, the gringa’s going to need a little more room than that on a trip to Mars. I’m just sayin’, ya know.

Although the necessary scope of how large an array really needs to be sounds absolutely outrageous, like, perhaps an array covering hundreds of square miles and orbiting the earth, scientists still believe it is do-able. And yet, with all of this good news, there is one little problem the scientists save to the last to mention.

That would be the sticky issue of how to put on the brakes. I mean, what good is it to send a satellite or probe blazing a light speed path through space if it can only pass through, never being able to slow down and click a couple of snapshots or collect some atmospheric gas samples or drop off a few passengers? It ends up just being a real expensive slingshot with old, highly educated kids playing around with it.

And, if a craft can’t slow down, how in the heck could it maneuver around space debris? That pea shaped probe will get obliterated the first time it comes up against a chunk of space ice the size of a nickel. So, the gringa says, “Well, scientists, sounds like you folks need to get back to the drawing board. At first I was very excited and now I’m just aggravated that you got me all excited for nothing. I am not interested in a light year speed fly-by to Mars or a light year speed crash landing suicide mission.”

That’s when the scientists remind us of another option. We could use the array for protection. Yes, we can zap asteroids and space debris that threaten Earthlings. See, I told you Earth cats are in for it.

 

Source: http://www.nasa.gov

image source:   http://www.spoki.tvnet.lv