Breaker One-Nine, SOS, FRB’s & ETs

Dot dot dot-dash dash dash-dot dot dot. Dear readers, do you know what that is? It is SOS in Morse Code. All radio operators know this. It is an understood code that crosses all language barriers. The gringa, fascinated with all things space, then has to ask, does this include extra-terrestrials? Well, who knows?!

Now, the SETI Institute (Search for Extra-Terrestrial Intelligent Life) doesn’t really make it a practice to emit signals in their search for ETs, rather, they listen to outer space “noise”. NASA’s search for extra-terrestrial life isn’t so much for little green men to have a conversation with, but, rather, the origins of life such as amino acids, ribonucleotides (RNA) and certain gases such as oxygen, methane, ammonia, hydrogen, and, of course, water.

However, Earthlings have been inadvertently sending out all sorts of signals into space for over five decades. As technological devices fill the Earth, transmission signals fill the heavens: radio broadcasts, television signals, radar blips and bleeps, etc. So, why do we not purposely send a message designed to create a favorable first impression rather than let all this mish-mash represent humankind? Does NASA and SETI believe that no one exists, thus no one is listening or do they believe there may be inherent danger in seeking out contact? Evidently the reason is because there is no consensus, yet, within the scientific community. The professionals are ARGUING. Hmph.

Douglas Vakoch, a researcher with SETI, thinks that it may be time to have an international discussion on the subject and let the public’s opinion on the matter be heard. He is on the pro-sending signals side of the argument. He proposes transmitting radio signals to hundreds of stars within eighty-two light years of our home planet. This can be accomplished with the radio telescope at Arecibo Observatory in Puerto Rico.

Renowned physicist, Stephen Hawking, on the other hand, thinks this is a bad idea. By sending out so many signals to every Tom, Dick and Harry alien out there, we could communicate with the good, the bad and the ugly. He believes we should be much more cautious in our approach.

So, it seems that, although there is no consensus within the scientific community on whether or not we should initiate communication, there is a consensus that somewhere out there is intelligent life that would not only receive the signals, but would be capable of responding, perhaps in person. The gringa says, “Hmmm.”

Now, the telescope at Arecibo has already sent a space message back in 1974. Consisting of an intricate code, it was transmitted to a cluster of stars 25,000 light years away.

The Crimeans sent out four messages to the cosmos from 1999 until 2008. They were transmitted from the Yevpatoria RT-70 radio telescope at Crimea’s Center for Deep Space Communications. Their ET messages were entitled: “Cosmic Call”, “Teen Age Message”, “Cosmic Call 2”, and “A Message From Earth”. The messages were made up of binary code, repeating signals, musical compositions, photographs, whale songs, etc.

Scientists believed that it is important to purposely beam thoughtful messages into deep space rather than let ETs believe all Earthlings are like the Kardashians, or the Zodiac killer, or Archie Bunker. Although Earthlings have been flooding outer space with signals since the beginning of the television era, most of our daily technologies do not have signals that are sufficiently strong enough to be picked up by our nearest living ET neighbors’ light years away. Although, if they are advanced enough, they have probably detected something by now.

So, if SETI and the Crimeans have already sent out some transmissions, the gringa then wonders, “What’s the big deal about sending more?” And, if our own daily barrage of digital signals and radio waves have the possibility of already being detected, what’s the point of “laying low”? If an ET civilization is super advanced to the point they could easily dominate us, yet they haven’t shown up and taken over, why be so worried? It seems they could care less.

The gringa thinks the real reason why the scientists can’t stop arguing and just get to the business at hand is an age old reason. Power struggle. Tsk, tsk. How disappointing. The gringa believed that surely, of all human beings, scientists were above such nonsense. As scientists consider the possibility of the most ground-breaking and historical event EVER playing out, they eye one another suspiciously and wonder just who is going to get the credit. Yes. Exactly who gets to devise the message, approve it and send it as the representative of the entire Earth?!

So, although there are researchers who want to open up the subject to public debate, that also opens it up to the general host of problems that goes along with human nature. Venturing into the area of communicating with an alien race would mean the establishment of protocols. Who gets to decide who we Earthlings talk to and what we talk about?

Although SETI wants to actively transmit in hopes of communicating with extra-terrestrials, the official policy of the institute is that the final decision belongs to the people of Earth. Such a decision affects all humans. It could be the single-most life affecting decision for mankind. Therefore, it should be left in the hands of all the people and not just a few “experts”.

Many other leaders in the space exploration community are in agreement, such as former Senior Scientist for Astrobiology in NASA’s planetary protection office, John Rummel and SpaceX founder, Elon Musk. Pioneering American astronomer, Geoff Marcy, who has discovered many “extrasolar” planets, believes it is important that every culture, even deep jungle indigenous peoples, upon Earth have the opportunity to have their voices heard in such a decision that will affect every person worldwide.

The discussion on this issue will probably continue to heat up because, recently, some interesting radio signals have been detected by astronomers who have been left scratching their heads and wondering if they could, perhaps, be a signal from intelligent beings, seeing that, like one of our own repeated signal transmissions, this signal also repeated itself.

If a repeating signal has been detected in deep space, could it have other origins than intelligent beings purposely transmitting? Canadian scientist Paul Scholz finds the mystery rather exciting and believes this to be an important discovery and wants to know if the signals originated with living, breathing ETs or if a star just went “kaplooie” and it’s just a “coincidence” that it created a shockwave noise that mimics a man-made (or little green man-made) artificial, repeating signal.

Until the signals began repeating, scientists theorized the rapid bursts of radio signals resulted from a star that went supernova and exploded or, perhaps, a neutron star collapsing into a black hole. But, now that the signals are identical and repeating, the same scientists don’t quite know what to think.

In addition to a repeating pattern, there are other singular differences that set the signals apart from other space “noise”. When studied further, the signals are “brighter” and in a different “spot” on the “spectrum” of other fast radio burst signals (FRBs). These details are all well and good, but all the gringa wants to know is, “Are we alone or not?”

The closest I can get to a straight answer is what a Cornell University astronomy professor has to say. According to Professor James Cordes, whatever charge is powering the signal, it is powerful enough to repeat the signal cycle within minutes. The energy packed behind the transmission must be impressive because they are extraordinarily bright, thus enabling us to see them from very, very, very, very, far away. And, the power source must also be incredibly secure and amazingly strong and durable because it is not destroyed by the transmission of an exploding-star-scale blast and is capable of repeating the exploding-star-scale blast.

To put all of this in a nutshell, five fast radio burst signals were captured by the Parkes radio telescope in New South Wales, Australia. Rather than just be a single burst of energy, these are double bursts, two bursts separated by 2.4 milliseconds, consistently. They repeated five times. The origins of the signals could be as far away as several billion light years beyond the Milky Way Galaxy, our home turf in the cosmos.

The gringa has no answer and remains intrigued. And my vote is that we send our own signals.




Image Source:






Chandra & the Jellyfish

IC 443 is more commonly known as the Jellyfish Nebula. What the heck is a nebula? Well, a nebula is a cloud of dust and gas found in outer space. Sometimes, at night, if you find yourself in the perfect spot for stargazing, you may notice a spot in the sky that is brighter or, perhaps, a darker shadow across a brighter patch.

The Jellyfish Nebula is thought to be the gas and dust leftovers of a supernova event that happened in outer space about 5,000 light years from planet Earth. What the heck is a supernova? Sometimes a star suddenly becomes much brighter because of great explosions happening within the gas that it is made up of. When it becomes so explosive and heated that it ejects most of its mass, it has gone supernova. So, in the simplest of terms, a supernova is a star that has exploded BIG TIME.

The gas and dust debris of the Jellyfish Nebula may also be the material that created a strange object found due south of the nebula. This object is officially called CXOU J061705.3+222127. Scientists just call it J0617. These same scientists believe this object to be a pulsar. What the heck is a pulsar? A pulsar is a neutron star that is rapidly spinning around. It also emits pulses of radio waves and electromagnetic radiation.

What the heck is a neutron star? A neutron star usually has a radius less than 18 miles but is densely packed with neutrons. They are most often created when a massive star goes supernova and leaves behind its core. As a massive star runs out of fuel the stage is set for a supernova explosion. When the fuel runs out, the outer layers collapse. When these outer layers come into contact with the core, they then bounce outward creating the supernova explosion. In the end, all that’s left is the core which is now spinning like crazy and emitting pulses of radio waves and radiation.

The post photo of the Jellyfish Nebula has an inset that shows the region surrounding J0617. Scientists are interested in the small ring that appears to surround the pulsar. There is also a feature of something jet-like that passes through the pulsar. The scientists want to determine if this emission is directly related to the pulsar or has a different source. Possibilities are a high speed wind of particles or something like a shock wave.

Nothing definitive has been concluded regarding when the supernova event occurred. Researchers have offered estimates ranging from 3,000 years ago to 30,000 years ago. Needless to say, the scientists have much more to learn about the Jellyfish Nebula and J0617. If the dear reader is interested in more details than what the simple-minded gringa can offer, check out the on-line source “The Astrophysical Journal”.

Research on the Jellyfish Nebula is managed by NASA’s Chandra program. Specifically, Chandra is an X-ray Observatory. It is the most powerful orbiting X-ray telescope in the world. Scientists from all over the world have access to the images generated by this program. The gringa loves how NASA likes to share knowledge and is not stingy with their technology.

Chandra studies cosmic X-rays, or, the effects of matter that has been heated to millions of degrees. High temperatures that create detectable X-rays happen throughout the universe wherever there are strong magnetic fields, powerful forces of gravity, or extreme explosions (like a supernova).

When a supernova happens, charged particles slam into one another. This causes them to produce energy in the form of photons. As photons fly through space, leaving the scene of a supernova event, they actually become light. These are just the sorts of things Chandra has been tracking and recording since 1999 when the Space Shuttle Columbia launched Chandra into outer space.

Chandra has eight mirrors that X-rays slam into, ricochet off, and are focused onto a focal plane that is half as wide as a human hair.  The focal plane captures the image of the X-rays and records the number, position, energy and arrival time. Two spectrometers then analyze the X-ray to determine what form of energy it is and other details of its physical condition.

Chandra is housed in a spacecraft observatory with two sets of thrusters. This observatory was the largest and heaviest payload ever launched by a Space Shuttle, weighing in at liftoff at 50,162 pounds. If you had eyes as powerful as Chandra, you could read a stop sign from twelve miles away. Chandra’s mission duration was originally set for five years. The mission began in August of 1999 and she is still going strong.

If the dear reader would like to delve into more information about Chandra, visit


Source & Photo Credit: