The Politics Of Saving Us


“Extreme space weather”… what the heck does that even mean? The gringa sees that President Obama has demanded that a plan be made in the event of “extreme space weather”. She is hoping this indicates that he takes very seriously the imminent threat that climate change poses. Is that what he’s talking about or is he worried about astronauts getting fried by extreme solar rays or blown to bits with gale force cosmic winds?

Specifically he is addressing the possibility of catastrophic solar flares that could destroy important infrastructure we humans rely on.  He wants a back-up plan for the nation’s electrical power grids, satellites, medical services and aviation industry. But he wants to do more than just protect the Americans he serves as president. He wants America’s plan to benefit the people of every other continent on Earth. And he’s not messing around. His demand was made through an executive order.

That means no messing about with Senate or House approval that could result in lengthy delays as legislators negotiate and jockey with power plays or, quite possibly, strike down any measure altogether. The gringa is perfectly OK with the president circumventing the legislative process with an issue so critical. You see, in this crazy system we call a democratic republic, at this moment in time we have a Democratic party President and a Republican party controlled legislature and we are less than a month away from electing what the gringa hopes will be another Democratic party president.

At a time like now, with climate change disasters real, one would think that everyone would be on board with doing the right thing and creating plans to save us all. Unfortunately, in politics, the number one priority for the Republican party is always power. They are more concerned with political strategies that will help them retain the power they have and create opportunity to gain more. If they allow any measure to pass that ends up being a good thing for the people of our nation, with a Democrat as president, his administration will get all the glory.

That is why practically every single bill that has been presented in Congress for the past four years has been defeated by power hungry Republicans who hold the voting majority. Even if the bill was something our nation desperately needed, Congress didn’t care. They would rather wait, hope for a new Republican president, and then pass all the good stuff so their party can get the pats on the back. But with an executive order President Obama has signaled that the security of humanity is more important than the Republican party’s desire for political gain. Thanks, prez.

His executive order implies cooperation between all government agencies, NASA, the media, academic organizations, and relevant organizations in the private and non-profit sector. As for insurance companies, they are not going to be able to give citizens a hard time if a rash of claims are filed after a solar flare related disaster. President Obama specifically mentioned the insurance industry as well.

We may be in for a wild ride. Who knows? The world hasn’t really seen anything like what happened in 1859 when the Carrington Event happened. The telegraph system of old failed throughout North America and Europe. All communication was temporarily cut off. So homeland security is testing devices and technologies that are hoped to protect the world’s communication systems and satellite networks so we can all encourage one another through a trying time and stay updated with just what the heck is going on.

Sources:

www.whitehouse.gov

www.newsweek.com

www.history.com

Image Credit:  earthsky.org

Sun Worship


Earlier this month celestial lovers throughout south and central Africa got to enjoy a spectacular solar eclipse that produced a ring of fire as the Moon transversed across the pathway of the Sun. The peculiar occasions when the Earth, Moon and Sun all line up together doesn’t happen too often. Such a rare event has historically been linked with all sorts of predictions and paranormal expectations.

The funniest recording of a solar eclipse is, perhaps, also the earliest record. Occuring in October of the 2137 B.C., two royal astronomers, Ho and Hi, offended the fourth Emperor of China’s Hsia Dynasty,  Chung-K’ang. The eclipse was an unexpected event. The poor astronomers were unprepared to perform the customary rituals that should have taken place. The pair of official stargazers were drunk and failed to launch the traditional arrows and beat out the right rhythm on the gongs and drums so that the Sun could be delivered from the mythical beast that was attempting to devour it.

Convinced that chaos would soon consume the empire, the astronomers were summarily executed as an appeasement sacrifice for their drunken dereliction of duty.  A public record of their death was translated in 1839 by scholars to reveal an amusing verse indicating that, although brutal in enforcing their expectations, the ancient Chinese did have a sense of humor:

“Here lie the bodies of Ho and Hi,

Whose fate though sad was visible –

Being hanged because they could not spy

Th’ eclipse which was invisible.”

In November of the year 569 an eclipse was recorded before the birth of the Prophet Mohammad in 570. There are many religious historians who link this eclipse as the moment of Mohammad’s conception. Interestingly enough Mohammed’s son Ibrahim died at the age of two-years-old during the occurrence of a solar eclipse. Mohammed wrote of this event as a sign sent from his God, Allah, of personal condolences. Muslims today still consider eclipses significant religious events. When the recent eclipse occurred mosques throughout Africa had special calls to prayer for safety and deliverance from harm.

Perhaps the most significant solar eclipse in modern history is the one of May, 1919. Commonly called “Einstein’s Eclipse”, it is considered to be the solar eclipse that changed the universe. For more than 200 years scientists had accepted Isaac Newton’s principle that the space of the Universe was as inflexible as mathematical principles.  Einstein set out to challenge this longheld belief. Einstein believed gravity was curved and flexible, affected by the mass of planetary bodies. He proposed that warping of space allowed planets to remain in their orbital paths, gravity distorted by the mass of a celestial body, the greater the mass, the stronger the force, which would result in more bending of light. This was to become known as Einstein’s Theory of Relativity.

When the 1919 eclipse occurred, British astrophysicist Sir Arthur Stanley Eddington led the charge for an experiment to take advantage of the expected eclipse. Eddington traveled to Principe which is in the Gulf of Guinea off of Africa’s western coastline. A horrible thunderstorm threatened to ruin Eddington’s chances but, fortunately, by afternoon the skies had cleared. Eddington’s celestial photographs and measurements were compared with photos and measurements recorded by Andrew  Crommelin at the Royal Observatory at Greenwich. The findings were announced by Britain’s Royal Society’s Astronomer Royal Sir Frank Watson Dyson. It was announced in London on November 6, 1919 that Newton’s theory had been disproven by Einstein’s new Theory of Relativity.

To make sure that you are ready for the next opportunity to view a solar eclipse, log on to www.timeanddate.com and keep a watch on the countdown clock for eclipses listed under their Sun & Moon tab. It seems we are only about 5 months away from the next big event.  There is a handy search window everyone can use to see if their city or country is going to be in the most fortunate position of being able to see the eclipse.

To view a solar eclipse it is important to wear protective eyewear. A homemade viewbox can also be created called a pinhole camera. All you need is a box with a small hole on one side for light to pass through and project an inverted image of the eclipse on the opposite side.  Below is a video with an example of how to make and use a homemade pinhole camera. One tip: The bigger the box the better the view.

 

 

Sources:

eclipse.gsfc.nasa.gov

www.timeanddate.com

Image Credit: cherokeebillie.files.wordpress.com

 

NASA, Please Explain


Why hasn’t mankind been back to the Moon? Why do humans only travel as far as the International Space Station (ISS) and no further if Russia and the United States have already had successful Moon landing missions? These questions fuel the conspiracy fires that claim the Apollo Moon landing was a staged scene and never really happened. Regardless of a person’s position on this, what of Russia? If they made it to the Moon, why haven’t they been back either?

During the years of the Cold War between the U.S. and the Soviet Union, it was always a game of one-upmanship. Rather than flinging bombs at one another it was a bit of “Whatever you can do I can do better.” The space race was no exception.

In 1961 the Soviet Union took the lead in the space race when Yuri Gagarin orbited the Earth and returned home, all in one piece. In response, U.S. President John F. Kennedy did not say, “Well done.” No, instead he threw down the gauntlet and swore that the U.S. would out-do the Soviet’s achievement. He declared that within a decade Americans would have a man on the Moon and back home safe and sound. Eight years later people around the world watched televised broadcasts of Neil Armstrong planting a U.S. flag on the surface of the Moon. Or did he?

What we know now compared to what we knew then may cast great doubt on the legitimacy of the Apollo mission. Accusations that film director Stanley Kubrick prepared a fake production staged with the latest technologies of 70s era filmdon may actually have credibility. Consider the most common criticisms that point to the film being a fake:

  • Wind mysteriously blowing a flag that should be in the vacuum of space.
  • Anomalous shadows cast in different directions which would indicate multiple sources of light.
  • No disturbance of lunar dust or the Moon’s surface from the landing of the space module.
  • What are the strange objects that are reflected at different times in the visors of the astronaut’s space helmet?
  • Where are all the stars that should be in the background?

Skeptics of conspiracy theories can argue away these questions. For years the gringa has been inclined to believe in the Moon landing as an event that really did happen. My reason being that, for one thing, think about how many people would have to be in on such a crazy secret for all of these decades. I don’t know about you, dear readers, but the gringa’s pretty certain that somewhere along the way, throughout all of these years, surely someone would have cracked.

Despite my confidence in NASA, however, the gringa must admit that by becoming informed about the Van Allen radiation belts, I may have to change my position. This may be the smoking gun that exposes how the entire world has been duped. The U.S., desperate to remain relevant and seen as the most powerful nation, outperforming its most aggressive global competitor, may have gone so far as to stage the most incredible hoax of all time.

You see, the Van Allen radiation belts surround the Earth. Consider these belts to be an enormous layered donut and the Earth the donut hole. They radiate outward as far as 36,000 miles depending on whether they are expanding or contracting. The innermost ring generally spans from 400-6,000 miles above the surface of the Earth. The outer belt stretches generally from about 8,400-36,000 miles above Earth. The ISS is safely tucked into orbit at a mere 230 miles from the Earth’s surface in what is called a Low Earth Orbit (LEO). Orbiting between the two belts is a GPS satellite set 12,500 miles away, just inside the innermost rim of the outermost belt, where radiation levels fluctuate according to waxing and waning cycles. Just within the outermost layer of the outermost belt is NASA’s Solar Dynamics Observatory in geosynchronous orbit at 22,000 miles away studying the mess solar radiation makes from time to time.

In addition to the Van Allen radiation belts is the problem of a cloud of cool, charged particles which envelopes most of Earth’s outer atmosphere. Its nearest edge is about 600 miles from the surface of the Earth and extends outward and stops just inside the outermost edge of the furthest Van Allen belt. Scientists call this cloud the plasmasphere. It seems to cause particles in the outer belt to scatter. As the electrons scatter they create a loop which becomes a well defined belt. The plasmasphere is responsible for creating and maintaining the belts. When a powerful solar event occurs, such as a solar flare, some of the belts’ electrons can be forced by these extreme conditions into the space void between the belt layers, thus creating the waxing and waning effect of the belts.

The craziness of this relationship boggles the gringa’s mind. Think about it. The electrons are prevented by Earth’s magnetic field from penetrating all the way to Earth and frying all of us Earthlings. However, they also do not have enough energy to escape and dissipate into outer space. Thus they are trapped in this belt system which results in a protective barrier that traps dangerous radioactive solar radiation so that we don’t all get fried. Without the belts we fry. Without the plasmosphere we fry. Without the magnetosphere we fry. And if we hang out in any of these Earth preserving regions for any length of time we fry. Is that not the most amazing irony? That which preserves us can also kill us.

Considering that the Moon is 238,900 miles from the Earth, these dangerous, radioactive belts must have been navigated safely with the technology available in 1969. The only other option would have been to “thread the needle”, so to speak, by using a trajectory that would have allowed astronauts to travel through a narrow window of space that would have avoided the highest concentrations of radiation within the belts.

If this path had been successfully traveled in 1969, and adequate shielding technology existed, why is the danger posed by the Van Allen belts considered to be the main obstacle and unsolved problem preventing a consecutive Moon landing today? The gringa suspects the answer may lie in the fact that there really was no successful 1969 Moon landing to begin with.

Here are the words and quotes NASA uses to describe the Van Allen belts today:

  • 2 donuts of seething radiation.
  • Impenetrable barrier.
  • Wax and wane.
  • Expose satellites in low-Earth orbit to damaging radiation.

So what did NASA do to deal with the dangers of the Van Allen belts? Did they come up with a competent strategy and deliver the real deal with a man on the Moon or did they scam the entire world?

Newly discovered in 1958 by scientist James Van Allen, not much was known about them two years later when the first solution was offered up. In 1960 Robert O. Piland and Stanley C. White told NASA that hoping to shield astronauts effectively from the radiation was impractical. They did believe they could provide moderate protection and a safe enough route that would enable astronauts to not fry as they passed through the outer belt.

NASA got to work with a Group On Trajectory Analysis. Van Allen, himself, suggested that by detonating a nuclear warhead the crew could clear a path of travel. The gringa can only say, “Thank goodness NASA didn’t do that!” However, the defense industry in the US really mucked things up by nuclear testing which only increased the intensity of the radiation levels in the belts.

In 1964 NASA officials were confident that with the right skin on the spacecraft, a layer of protection provided by instrumentation, and the right trajectory, the risk was nominal to the crew. Equipped with dosimeters to record radiation exposure, the gringa is puzzled over the final results as reported by NASA. The agency reports that over the course of all the Lunar missions, astronauts were only exposed to radiation levels that were actually lower than the 5 rem a person working in a nuclear power plant would be exposed to annually. The U.S. Nuclear Regulatory Commission claims that the average American is exposed to a radiation dose of about 0.62 rem annually. A full body CAT scan delivers a radiation dose of 1 rem. So any human going through some rather routine medical procedures can easily reach the same radiation exposure levels as what NASA reported in the Apollo Moon landing crew.

ISS astronauts deal with radiation issues daily. It took the gringa quite a bit of head scratching and calculating to discover how ISS astronaut radiation levels compare to the astronauts of the Apollo Moon missions. They use a different measurement, the SI system. Maybe, if there is a conspiracy, this is by design to confuse amateur sleuths like myself. Anyway, I digress.

Basically one mSv is the equivalent dose of radiation an average person would be exposed to on Earth in one year’s time. Astronauts on the ISS are exposed to 1 mSv daily! This exposure takes place well outside the Van Allen belts in a space station constructed with the latest technology in radiation shielding and manned by personnel equipped with the safest space suit equipment available. How, then, could minimally protected astronauts pass through highly radioactive belts not just once, but twice, and not be ravaged with radiation? If ISS astronauts report a daily radiation exposure equivalent to a year’s worth of radiation back home and are not in the belts themselves, how in the world is the public supposed to believe that the Apollo astronauts were only exposed to the amount of radiation a person would absorb if they had 4-5 full-body CAT scans?

The  gringa has become incredibly skeptical. The gringa is going to be hopping mad if she discovers hard evidence that proves we have all been had. NASA, please explain.

Sources:

www.nasa.gov

www.nrc.gov

www.popsci.com

www.mun.ca

www.newscientist.com

www.windows2universe.org

Image Credit: www.wakingtimes.com

Salute Our Space Heroes


Traveling in outer space sounds fun. Being an astronaut seems to be an exciting career. Until the gringa is reminded about space radiation. Those heavy duty marshmallow looking suits astronauts wear are not just to keep them warm, properly pressurized and surrounded by oxygen. They also protect against dangerous space radiation. But is it enough? Are spacecrafts and the International Space Station adequately protected or are our astronauts slowly being radiated to death?

Radiation is an invisible energy form of high-speed particles and electromagnetics. It surrounds humans in everyday artificial light, sunlight, and electronics that produce radio-, television-, and micro- waves. Radiation comes in two forms:

  • Ionized: This is the worst in the form of gamma rays, protons and neutrons. Exposure to ionized radiation results in exposed atoms becoming unstable by an energy powerful enough to remove electrons from their orbit around the atom’s nucleus.
  • Non-ionized: Not powerful enough to destabilize atoms, this is the kind of common radiation produced by microwaves, radio waves and light.

The radiation in space is, unfortunately, comprised of ionized radiation. There are three things that typically create dangerous space radiation:

  • Trapped radiation: The Earth’s core creates a magnetic field that surrounds our planet up to several thousand kilometers from our planet’s surface. Solar wind carries charged particles that slam into our magnetic shield. Some particles manage to pass through. Those that don’t create a shockwave that deflects from Earth’s magnetic field. This creates layers of cavities called the “magnetosphere” that act as shock absorbers to protect Earth further from charged particle bombardment. But some particles get trapped in these cavities and they become radioactive belts surrounding Earth. Astronauts have to pass through these dangerous belts before they reach deeper space.
  • Galactic Cosmic Radiation (GCR): Outside our solar system ionized atoms traveling at almost light speed pass through space matter, including humans and man-made objects unless they are properly shielded.
  • Solar Particle Events (SPE): Sometimes the Sun flares and ejects copious amounts of highly charged radioactive particles into space. These particles travel so fast they are capable of reaching Earth within ten minutes of a solar or coronal flare event. These are dramatic happenings that temporarily drastically increase radiation exposure.

Astronauts traveling through space radiation or living in the ISS have to be protected from space radiation. Radiation exposure causes damage to human cells. There is a scientific formula used to calculate how much radiation exposure an astronaut can expect when working on the ISS. It’s a bit too complicated for the gringa to understand. These calculations are the reason ISS missions have a maximum six month cycle and spacewalks are limited. Exposure is increased during a spacewalk to perform repairs and maintenance.

Shielding is preferred to be constructed of materials like polyethylene because it has a high hydrogen content. This kind of material is more effective than metals at reducing the ability of particles to pass through and enter the modules. Astronauts also wear monitors called “dosimeters” that constantly measure the level of radiation damage to the chromosomes in their blood cells.

Every single astronaut is a hero. No matter what the duration of their mission. No matter what the nature of their mission. No matter what it is they did, whether it seemed glamorous or insignificant, these men and women are heroes of science. They are risking their lives every moment they are off the surface of the Earth. Even if they return safely, they have still sacrificed much. From musculo-skeletal issues to organ damage and higher cancer risks, every single astronaut will experience the effects of radiation exposure for a lifetime despite the measures taken to protect them. If you ever meet an astronaut thank them for their invaluable sacrifice and service performing critical scientific endeavors that are helping us understand our origins, learn about climate change conditions and create solutions to save our homeworld.

Sources:

jsc.nasa.gov

spaceflight.nasa.gov

Image source:  antarcticglaciers.org

 

The Truth About Tabby


UFO and alien conspiracy theory buffs are going to enjoy this post by the gringa, or not. I guess it depends on if you enjoy a healthy dose of conspiracy debunking or truth. You see, dear readers, there has been a bit of hubbub about an interesting space object that is orbiting a nearby star and was detected by the Kepler telescope late last year.

The SETI Institute (Search For Extraterrestrial Intelligence) calls KIC 8462852 “mysterious”. NASA believes the mystery is resolved with the theory that the strange signals are the result of cosmic dust, probably from multiple impacts of a comet swarm, and causes the star’s light to flicker erratically. Vanderbilt University researchers, who affectionately call the star Tabby, debunk theories by those who believe it to be home of aliens who are very, very busy. The astrophysicist contributors to the respectable Astrophysical Journal agree with Vanderbilt’s point of view while at the same time agreeing with theories from other scientists who propose an extraterrestrial origin theory. So, who’s got it right? Who’s got it wrong? Just what the heck is the truth about Tabby?

Who Is Tabby

Tabby is officially designated star KIC 8462852 and shines brighter than our own Sun about 1400 light years from Earth in the Cygnus constellation. It is a subject of study by NASA’s Kepler space telescope which reveals that from time to time it dims about twenty percent in brightness.

SETI’s Conclusion

The cause of the dimming light could possibly be because of material or objects orbiting the star. SETI researchers believe they have evidence to determine that these objects are not planets. SETI considers the possibility that Tabby could be home to a technologically sophisticated society that has constructed a swarm of solar panels that orbit the star which would account for the light fluctuations.

SETI uses its own Allen Telescope Array to study radio signals that originate from that part of outer space. They attest that these radio signals are of artificial origin, calling them “non-natural”. They search for narrow-band signals and broadband that might possibly be produced by a large and powerful spacecraft. They also search for evidence of laser pulses. SETI’s Panamanian partner, Boquete Optical SETI Observatory, performs the laser pulse research.

Research such as this takes a long time so the gringa will have to practice patience for SETI to conclude their studies and publish their final results. They admit that, historically, cases like this usually result in finding a natural cause for the anomalies but they still must investigate the possibility of it originating from extraterrestrial intelligence. That is, after all, their mission.

NASA’s Conclusion

During four years of observation, the Kepler mission recorded strange happenings in 2011 and 2013 when interesting and dramatic light fluctuations occurred. To help determine what happened, NASA also trained the eye of the Spitzer Space Telescope in Tabby’s direction. Kepler observed the visible light. Spitzer could delve deeper into the invisible infrared light signals and patterns. In November of last year Spitzer paid off with a recording of another light fluctuation.

Although NASA’s theory is that clouds of space dust were formed from a swarm of comets that orbit the star in erratic patterns, Spitzer did not discover evidence to support this theory. This caused NASA to switch to a cold comet theory. One lead comet would be followed by a swarm of smaller comets. If this is true, even if the comets were already out of the telescope’s view as they traveled around Tabby, they should still leave behind a detectable infrared signature. However, this was not the case.

Researchers admit that more observations need to be recorded to determine just exactly what is going on. NASA admits that Tabby is strange, indeed. However, they believe that a natural cause is more likely than “little green men”.

Vanderbilt University’s Conclusion

Vanderbilt studies focused on the 100 day period when the most significant light fluctuations occurred. The manner in which they occurred suggested that a large number of “irregularly shaped objects” passed in front of the star causing its light to be blocked temporarily. Working off a report from an astronomer at Louisiana State University who concluded that the star had diminished in brightness by 20 percent over the past century, Vanderbilt finds a natural cause unlikely as an explanation for this. This has become fodder for the theory that a megastructure has been constructed that is absorbing the star’s energy, the solar panel array theory. This is a theory that was reviewed, accepted and published by the Astrophysical Journal.

Vanderbilt, however, did not stop there. They soldiered on. Partnering with amateur German astronomer, Michael Hippke and NASA scientist Daniel Angerhausen, the team began comparing the 20 percent drop in intensity to other stars. They discovered that this is not an unusual phenomenon. In fact, it’s not a star phenomenon at all. It is simply the result of technological changes and advances of human manufactured instrumentation for observance.

The Gringa’s Conclusion

These are all interesting theories but not yet solid answers. So, the gringa will wait and see if, ten or twenty years down the road, we all find out what the actual, final answer is:

  • Comet Swarms

or

  • Extraterrestrial Solar Array

Until then, Tabby will be the most interesting and mysterious star in our night sky.

Sources:

www.seti.org

www.nasa.gov

vanderbilt.edu

Image Credit:  www.centauri-dreams.org

 

The Hi’s & Lo’s of JAXA


Back in February space agencies around the world were cheering on the Japan Aerospace Exploration Agency (JAXA) as it launched a new space observation satellite that was going to get us all some darn answers about black holes. This joint effort between JAXA and NASA caused a bit of confusion among outsiders because the satellite went by different names depending on if you were an Eastern space enthusiast (Hitomi for you) or a Western space enthusiast (ASTRO-H for you).

The gringa prefers the moniker Hitomi. This Japanese word has several meanings, all of which the gringa likes much better than the anacronym ASTRO-H. Hitomi literally means the “pupil of the eye”. However, when you break the word down into its phonetical language parts “hito” and “mi” it becomes “beautiful history”. As I look into the vastness of space and the stars that are kazillions of years old, the cosmos most certainly is the most beautiful history I have ever beheld.

Unfortunately, however, Hitomi’s story is not so pretty. Launched back in February, space fans everywhere were so excited that soon the satellite would be orbiting about 300 miles above us and collect data on X-rays emitted by black holes as well as galaxy clusters. Scientists have been eager for any means to gather more information since the detection of gravitational waves were announced which are directly related to black holes.

After a successful launch the evening of February 16, JAXA and NASA announced that Hitomi’s solar arrays were operating properly and began anticipating the arrival of data and images. Japan’s sixth satellite for the research of X-ray astronomy, the science community waited with bated breath for what they were certain was going to be groundbreaking information from the latest state of the art space satellite technology.

By March 26, contact with Hitomi was lost. By April the announcement came that finally, all hope was lost as well. Bye-bye Hitomi.

Once Hitomi reached its orbit things began to go wrong. Scientists reported that communication was lost within days and that their only conclusion was that the satellite had most likely disintegrated. A quarter of a billion dollars converted to space junk in a matter of weeks. How terribly disappointing. The director general of JAXA, Saku Tsuneta, officially announced the abandonment of the project with his deepest regrets.

Researchers believe that the solar panels that control the instruments may have broken away from the satellite. This would have basically transformed the satellite into a rudderless ship adrift in space. It will be about twelve more years before anything matching Hitomi’s capabilities will launch when the European Space Agency (ESA) completes a similar project.

On a side note, the gringa is surprised that conspiracy theorists haven’t jumped all over this story. When communication was first lost with the satellite, hope was revived when JAXA detected three signals they believed originated from Hitomi. However, after more scrutiny, it was discovered that the signals were not from the spacecraft. Hmmm. The gringa wonders just where, or whom, those signals came from. Could it have been some very clever and covert space aliens who captured human technology? Only time will tell!

Sources:

www.japantimes.co

www.nasa.gov

phys.org

www.bbc.com

Image Source: i.dailymail.co.uk

 

 

 

 

The Case Of The Missing Matter


Some time back the gringa wrote about dark matter. This is invisible stuff in the universe that we only knows exists because of its gravitational affect upon other objects in space. Now scientists have a bit of a conundrum. It’s not bad enough that we have to accept the reality of lots of invisible stuff surrounding us but we also have to deal with the mystery that some of this stuff has just disappeared. Scientists want to know just where all this missing matter has got to. This is what they call the “global missing baryon problem”.

The easiest explanation of the “global missing baryon problem” goes something like this:

Baryon – this is a subatomic particle that has a mass equal to or greater than a proton. Despite the fact that the universe is incredibly vast, scientists, through mathematical formulas using their knowledge of how many protons are found in specific types of matter, can actually calculate how many atoms, protons, electrons, neutrons and baryons should be present in a galaxy. It seems that the expected number of baryons is coming up short. The baryon shortfall affects visible matter as well as dark matter.

The gringa would like to know just where the heck these baryons have gotten to and does it really matter in the grand scheme of things? I mean, am I going to wake up tomorrow and discover that half my ear is missing, or my flower pot has disappeared? Dear reader, you understand what I’m talking about. Is this something that we should really be worried about or is it just an enigmatic puzzle for scientists to puzzle over?

Australian astronomers from the Compact Array station claim that they know what has happened to the baryons. They believe that they are part of invisible structures in the Sagittarius constellation of our own Milky Way. And they are whopping big. The swath of space that Earth cuts as it makes a one year transit around the Sun is about the scope of the structures’ expected size. The telescopes used in Australia are radio telescopes so even though these dark matter structures are invisible, the Australian array is able to detect their presence in the Sagittarius constellation by “seeing” the gravitational affect on nearby stars and detecting changes in radio wavelengths within light.

Now, we’re not talking about invisible extra-terrestrial shopping malls. Astronomers are positing that it is more likely that the structures are large clouds of gas. They describe their shape as noodle-like. The gringa thinks maybe these are the spaghettified remains of objects sucked through a black hole. Scientists believe they are hollow. However, there is also the possibility that they are flat and one dimensional, like a bed sheet and they are viewing the edge. The gringa says, “Who the heck knows?! That about sums it up.”

Whatever they are and however they came about are distinct mysteries. All scientists really know is that they exist. The structures were discovered in 2014 when light from quasar PKS 1939-315 passed through the structures and became distorted. The light itself was not distorted but, rather, the radio wavelength band. Because the light intensity was not affected, it is believed that the invisible structures are dark matter that contain no dust. Kind of like light passing through a drinking glass. If the glass is clean, the light passes through just as bright on exit as on entry but still distorted. If the glass is dusty, the brightness of the light passing through dims in addition to the distortion produced by the glass’ matter itself.

These structures are not just sitting there twiddling their thumbs. Scientists have estimated that they are traveling about 30 miles per second (or 50 kilometers per second). Seeing as how they are about 3,000 light years away, the gringa’s not afraid of a surreptitious impact with invisible “stuff”.

But do the scientists know if this missing stuff serves a purpose? It seems that everything else in nature has a purpose, its own vital part in the grand scheme of things. These invisible structures could be very important. The gringa thinks it’s great to study them but we may not want to go messing about and interfering. Who knows what the heck could happen!

It seems that there are multiple theories on what their purpose is. Some scientists believe that the structures don’t behave like un-structured dark matter. Dark matter does not follow rotational and orbit patterns and could serve a purpose like cosmic fibers that hold galaxies together. However, scientists are not so sure that once dark matter forms structures like this their cosmic fiber job is still what they are doing. The gringa wonders if maybe they are just big galactic recycle bins, containing left over bits of matter that are left over from the creation process stars go through.

Basically, scientists only know that they are there. Bing, bang, boom, and that’s it. It’s like saying, “Hey, a giant, invisible elephant lives in your house and we don’t know how he got there or why he stays and if he is doing anything that affects your life. But we just thought you would like to know that he’s there.” Yeah, thanks guys.

Sources:

www.yahoo.com

arxiv.org

www.narrabri.atnf.csiro.au

www.iflscience.com

Image Source: www.ottawa-rasc.ca

 

 

 

 

Who’s In For A 2-Month Long, Melanoma-Free Day?


As researchers plot their space plans to discover where possibilities lie for a home planet like Earth, that might even be supporting our ancestors, where are they looking? MIT astronomers comprising an international team in Belgium are plotting for a search about 40 light years away. That means if we don’t want a spaceship to arrive with astronauts dead of old age or perhaps affected by age-related dementia, we have to send astronauts in the age group of 20s-40s to manage the forty year flight mission. It may take another decade or two for space agencies to have the ability to travel that far so elementary and middle school children of today are the astronauts of tomorrow that may be slated for just such a mission.

Beyond our solar system is the best bet for finding life like our own, or at least a few planets like ours. An MIT team has discovered three planets that orbit a dwarf star about 40 light years away. Their sizes are about the same as Earth or Venus. The telescope the astronomy used to locate them is the TRAPPIST telescope located in Chile. This telescope is designed to specifically focus on a cluster of dwarf stars, 60 in number.  Belgian scientists created TRAPPIST to study the infrared wavelengths of dwarf stars and the planets surrounding them.

The scientist’s favorite dwarf star is an ultracool (as in thermally ultracool, not socially hip) star about the size of Jupiter and much cooler than our own sun. Beginning a period of observation in September, 2015, the astronomy team observed regular intervals of fading in the infrared signature of the star. They theorized that planets were passing in front of the star causing this to occur.

The team turned their attention to the time to expect a light fade event and discovered that there were, indeed, planets orbiting the star. The two nearest planets were similar in size to our own Earth and Venus. The closest planet that has everyone’s attention is named 2MASS J23062928-0502285, commonly called TRAPPIST-1. The two planets have orbit cycles, respectively, of 1.5 of our own days and 2.4 days. The amount of radiation they absorb from their star is significantly more than what we deal with. The closest one receives about four times the radiation we get and the next one about two times the amount. So, if there is any life there it would have to have evolved with natural radiation tolerance.

The third planet in distance from the star has an unknown orbit cycle. The scientists’ best guess so far is that it could be anywhere from four to 73 days but would receive significantly less radiation. I guess that’s good news. If we need to relocate I suppose we could deal with a four-day long day or even a two-month long day and not have to worry about skin cancer.

When the team analyzes the size of the planets in relation to the star, and take into account their proximity to their sun, they believe that life could be sustainable. They calculate that there could be areas with a temperature range less than 400 kelvins. That converts to about 260 degrees Fahrenheit or 127 degrees Celsius. Not exactly a tropical paradise but conditions where liquid water and organic life could survive.

The next step is to study the atmospheric conditions of the planets to see what their atmospheres are composed of. What kind of gases? Is there breathable oxygen? And they believe that within their own working career’s lifetime they will be able to determine if these planets are inhabited with life of some kind, say the next ten years or so.

This is a breakthrough in science. Traditionally scientists have studied bright solar stars like our own. By taking a risk and searching for a cool dwarf star, this MIT group has hit paydirt with the find of a lifetime. To accomplish their task they had to design a whole new set of instruments specialized to detect the radiation emitted by cold dwarf stars and only visible through an infrared telescope. The whole field of detecting other worlds changed simply by changing the wavelength humans were viewing the galaxy with. Perspective is everything.

Source: news.mit.edu

Image Credit: http://www.storify.com

Rosetta – On A Mission To Discover ETs


Shall the gringa take the time to debunk an anonymous “whistle-blower” who claims that the European Space Agency is in communication with extra-terrestrials under the guise of a comet-chasing space program? Yes, dear reader, let us please do and do so together. First, a few preliminary facts about the ESA’s comet chaser mission, the Rosetta space probe:

  • 2004 Rosetta space probe launches for a ten year journey through space, chasing down a comet.
  • 2014 Rosetta arrived and locked into a matching orbit with comet 67P, also known as Churyumov-Gerasimenko (which the gringa likes to refer to as Chur-Ger).
  • Philae lander module touches down on the surface of the comet and begins collecting scientific data and transmitting back to Earth.

Allegations by the ESA insider “whistle-blower”, sent anonymously by e-mail to a science blogger:

  • Chur-Ger is not a comet.
  • Chur-Ger is an object that has been sending signals received by NASA for over two decades.
  • Illegally obtained digital images were forwarded alleging that artificial structures exist on the surface of Chur-Ger.
  • Chur-Ger has an unusual movement pattern inconsistent with a trajectory or orbit of a natural celestial body.
  • NASA has records indicating that Chur-Ger has changed its trajectory rather than have another space object causing it.
  • Rosetta is not a comet chasing science mission but a cover-up for a joint NASA/ESA military style reconnaissance mission to discover just what the heck Chur-Ger really is.

Facts gathered from official ESA Rosetta mission reports:

  • November 12, 2014, Philae successfully landed on the comet (a first time ever maneuver).
  • May 27, 2016 the amino acid glycine was detected in the comet’s atmosphere. This amino acid is necessary for the construction of DNA and cell membranes. The building blocks of life were found on the comet which lends credence to the Anthropocene theory of how life began on Earth, life creating substances being delivered to Earth by hitchhiking on a comet or asteroid which collided with our planet.
  • Chur-Ger was not the first comet to have life creating amino acids (re: comet Wild-2 & NASA’s Stardust mission)
  • Glycine does not require water to form, solving the origins of life in outer space theory problem of no liquid water yet found on any celestial object other than Earth.
  • Phosphorus was also detected which is necessary for DNA to form a framework and for cells to transport chemical energy.
  • March 11, 2016 the ESA reports that there is an interesting magnetic-free bubble surrounding Chur-Ger’s nucleus and extending outward about 4,000 km. Basically, the comet is not magnetized. The de-magnetized properties results in the comet’s trajectory being affected in ways that are not typical for celestial objects.
  • April 7, 2016 it was reported that Chur-Ger changed colors. Within the months after Rosetta’s arrival, Chur-Ger was very near the Sun. The heat from the Sun stripped away older surface materials and newer, brighter materials were exposed. Reflective properties changed. Chur-Ger changed from being a dark object to a brighter, bluer object. In all, the comet became about 34% brighter.
  • April 26, 2016 Philae lander awakens and begins data collection but does not begin transmitting data until June 13.
  • July 9, 2015 the Philae lander enters hibernation mode and discontinues data transmission. It is suspected that dust from Chur-Ger may be coating Philae’s solar panels, interfering with their ability to recharge.
  • September 2016, after years of providing scientists with fascinating data about comets, the Rosetta mission comes to an end as the space probe slowly crash-lands onto the comet. (Even in outer space humans are litter bugs.)

One reason that space agencies are willing to spend billions studying comets is that they are the best resources to find the origins of life. They have basically been frozen in time, the same today as they were billions of years ago. They are the perfect reservoirs to contain the primitive biological material that may have resulted in you and I today.

Although the possibility of a secret mission involving communication with extra-terrestrials sounds exciting, the gringa is equally excited over the actual findings of the building blocks of life on a comet. To consider that humans are really the extra-terrestrials after all, that we all originated from somewhere in outer space, is utterly compelling. That means we are all truly the children of stardust or we have a home world somewhere which begs the questions of: A. Is it still inhabited?  B. If not still inhabited, are there ruins and artifacts to be discovered that will shed light on who our ancient ancestors were? C. Have comets deposited life building blocks on other planets that have also evolved into intelligent life?

So, although the whistle-blower suspects humans in communication with ETs on a comet, the gringa believes every human may already be communicating with ETs every day just by talking to each other! So, in essence, the Rosetta mission, in search of the origins of human life in outer space, is also on a search for extra-terrestrials like the whistle-blower claims. It’s really a search for ourselves, because the gringa suspects that we are not really from around here.

Sources:

www.ewao.com

www.sci.esa.int

Cosmic Spas & Outer Space Mineral Mines


Are NASA and other international space agencies interested in creating colonies on the Moon and various other exotic, cosmic locales? Most certainly. However, not for the nefarious purposes of whisking away the highly educated and financial elite in order to preserve the human race from extinction. What they really want to do is exploit the natural resources of these places.

Humans are a hungry species and their appetites include all sorts of stuff from fruits and vegetables to minerals and ores. Many minerals and ores are not only rare, with few deposits in sundry places around the world, but are also finite in their supply. Once diminished, humans will have to find another source. That’s where asteroids and the Moon come into play.

Asteroids are like one of those grab bags you get as a party favor. You never know what’s inside. Although primarily chunks of ice, tar and dust, they also contain scare minerals and metals. For astronaut mining crews, outer space is full of opportunity, kind of like a mechanic entering an auto junkyard the size of Earth. Best estimates to date believe there are hundreds of thousands of asteroids, some nearly five billion years old, of assorted sizes and shapes from the size of a coffee table to hundreds of miles in diameter (Earth, in comparison, is about 8,000 miles in diameter). With such abundance, if humans can overcome the technological and economical obstacles, we may have a seemingly limitless supply of raw materials available.

The gringa wonders what will happen when that occurs? Will space become filled with flag waving asteroids? Considering even a small asteroid could be valued at many millions of dollars in potential minerals, will countries be zipping about space, hither and yon, planting flags on as many asteroids as possible in a territory game of, “Mine! I found it first!”? The gringa is hoping it will be much more civilized than that.

For mining purposes, asteroid’s are classified according to three groups based on light reflection (spectral) analysis. Since mankind cannot yet land on an asteroid and physically take a geological sample or do so with a robotic satellite, scientists evaluate how light reflects off the surface of an asteroid to determine its primary mineral component.

C-type asteroids are dark and carbon based. They are comprised of clay based minerals that have lots of water trapped within the clay. The gringa thinks these could, perhaps become cosmic spas if we could find a way to generate some kind of thermal reaction within the asteroid. Think of it, “Come visit asteroid XP-247 for its relaxing steam baths and mineralized clay body and facial wraps. Just don’t forget your oxygen mask.”

But what about the carbon and other stuff in the clay? Is that any good for anything? Yep. It makes a garden grow lush, thick and plentiful. C-type asteroids rich in carbon, phosphorous and other elements in the fertilizer spectrum could be very valuable as future garden spots. The gringa can now see the cosmic version of the “Hanging Gardens of Babylon” where visitors can also get a soak in the hot springs and a beautifying and detoxifying mineral rich clay body wrap.

I mean, really, we have plenty of clay and carbon and water here on Earth but surely there will be an eager entrepreneur who will see the same potential. Or do we really have plenty of clay, minerals and water on Earth?

The water reserves could very well come in handy. The gringa can see it now – a gravity beam lassos a water rich C-type asteroid and hauls it near Earth’s atmosphere. It then uses transporter technology that has finally been perfected to zap it through the atmosphere, avoiding a friction filled entry that would evaporate up all that precious water. Then, as it approaches fatefully close to a desert region, just before impact a precision laser beam goes, “ZIP, ZAP, ZOOM!” and a lovely shower of water rains down upon the desert with all the pulverized clay and carbon providing rich fertilizer. The desert is soon a fertile oasis. Hey, it could happen. Stranger things already have.

But NASA thinks the real value of water rich asteroids is in using the resource in outer space. By finding a way to mine the water in flight, crews could save billions of dollars by not having to pack this life-support necessity. Interestingly enough, the very thing that humans need to survive, consisting of two molecules of hydrogen and one of oxygen, are the very elements of rocket fuel. (Wow, humans are 60% rocket fuel, or, water, depending on your perspective!). So, astronauts dock their spaceship at a galactic version of Exxon to fill up the tank and top off the water reserves. And while the service station is checking the engine’s oil level and cabin’s air pressure, the crew is freshening up at the nearby spa. Interesting.

So, C-type asteroids can either be Desert-to-Eden conversion sources, hot spring spas, water wells, or rocket fuel depots. Or all three at the same time.Take your pick.

S-type asteroids shine a little brighter than dark, carbon based C-types. That’s because they are rich in reflective metals like cobalt, iron and nickel. If a mining crew is really lucky they could find one with deposits of rhodium, platinum or gold. Scientists estimate that an asteroid about the size of an average bedroom could be packed with well over one million pounds of metals, a tiny fraction being the exceedingly valuable rare ones. Even if mining crews could extract just one hundred pounds of platinum, at about $1000 an ounce, a $100,000 load of platinum would just be the gravy on top of the wealth accumulated from the remaining predominant minerals.

But it may be the M-class asteroids that wars end up being fought over. The wars for oil that we have raging now could very well become wars for M-class asteroids in the future. These asteroids are expected to contain at least ten times the mineral content of S-types.

To make space mining a reality, the mission has to be profitable. With current missions costing in the hundreds of millions, some even billions, an asteroid would have to be massively rich in raw materials. The other option is to develop technologies that are more economical.

Before any of that even matters, current asteroid knowledge needs to be vastly broadened and fine-tuned. We need cosmic cartographers to accurately map the hundreds of thousands of asteroids in outer space. The world needs space geologists that have the technology and knowledge to analyze what minerals each asteroid actually contains. Young students now, who have an interest in a cosmic career, could really have a geology or cartography degree pay off by landing them their dream job.

NASA’s first effort to test their scientific mettle for determining present mineral resources within an asteroid lie with their OSIRIS-REx mission. The goal of “Origins, Spectral Interpretation, Resource Identification, Security and Regolith Explorer” is to return with a geological sample from asteroid Bennu. It is set to launch in September and arrive at the asteroid almost two years later. If all goes according to plan, Earthlings can expect an authentic piece of Bennu to arrive on planet Earth around 2020. (Of course, the gringa is reminded of her favorite piece of motherly advice given regularly to her children in efforts to cultivate a more relaxed approach to life, “The plan is that nothing goes according to plan.”)

In addition to geological studies of Bennu’s raw materials, asteroid re-direction technologies will also be studied. The spacecraft is scheduled to perform an interesting experiment. It is going to give Bennu a gentle, solar nudge. Scientists want to know if sunlight can be used to affect the path of travel of asteroids. I guess the reasoning is that asteroids are too valuable to simply blast into oblivion if Earth happens to be in the way. They would rather nudge them aside then attempt to exploit the wealth they contain.

The most important goals of the mission, however, are to further the development of space mining technologies. They plan to scrape together a two ounce and 4.4 pound geological sample. The spacecraft will then use its state-of-the-art instruments to map the surface of Bennu and analyze its composition. These are the on-board technologies and their purposes:

  • OVIRS (OSIRIS-REx Visible and Infrared Spectrometer) – analyzes visible and near-infrared light to detect minerals, compounds and chemicals within the asteroid.
  • OTES (OSIRIS-REx Thermal Emission Spectrometer) – analyzes infrared light to detect surface minerals of Bennu, determine surface temperature and map the location of water-rich clay mineral deposits.
  • REx (Regolith X-ray Imaging Spectrometer) – analyzes X-ray aura of Bennu’s surface in sunlight to calculate amounts and locations of elements like: iron, magnesium, silicon and sulfur.

To find out if sunlight can be used as an asteroid diversion technique OVIRS and OTES will combine their abilities to study what is known as the “Yarkovsky effect”. When an asteroid absorbs sunlight much of the heat radiates outward and provides a propelling effect. Observations will be made to see if a “man-made” solar heat saturation could result in changing an asteroid’s trajectory.

Most of what will be recorded by the different spectrometers will only reflect what is on Bennu’s surface and within a shallow depth (about half a millimeter). They are not capable of reaching deep within the asteroid’s core. To get a deeper look the spacecraft has a tool that blows nitrogen gas onto the surface that will force minerals up from a depth of about two inches. Even so, it’s pretty obvious that much about Bennu will remain unknown even if the mission is successful in achieving all of its goals.

But, a successful mission will at least tell the world one thing: can mining asteroid’s work? The gringa believes if great wealth is at stake there will be movers and shakers in this world who will make it work one way or another while pocketing a healthy profit in the process.

Source & Image Credit:  www.nasa.gov