Ready To Ride The Lightning, Er, Photon?


If you were to hitch a ride on the Voyager I spacecraft, you would find yourself hurtling through space at 35,000 miles per hour (mph). That means it would take you about 40 years to exit our Solar System. In July, the fastest spacecraft ever built by NASA, Juno, made history as it neared Jupiter. It travels about 165,000 mph.  That means you could get to the edge of the Solar System about 5 times faster, in less than 10 years. With Mars being about 250 million miles from Earth, it would take 1,500 hours to reach Mars strapped to the back of the Juno spacecraft.  That’s about a 2 month trip. Of course,  Juno is not designed to carry a crew. It’s a robotic probe that collects environmental and scientific data.

Even if space agencies succeed in building a manned spacecraft that can deliver a crew safely to the Red Planet, a two month space flight is very problematic physically. They simply won’t be able to perform the necessary tasks. They may not even be able to survive. The gringa asks, “Is there any way to get them there faster?” Yep. If they ride lightning fast photonic capable space speedsters instead of shuttle slow, rocket propelled space cruisers.

What the heck is photonic propulsion? It may sound complicated and fancy but when you break it down it’s not so hard to understand. A photon is a particle of quantum light or some other form of electromagnetic radiation. Propulsion means to drive something forward. So, we’re talking about using light to move a spacecraft. And a physics professor named Philip Lubin believes it’s possible. Lubin is developing a photonic laser thruster system for NASA.  The project is called DEEP IN which stands for Directed Propulsion for Interstellar Exploration. If the technology works a probe could make the trip to Mars in only 3 days. A manned vessel with a full payload could make the trip in less than a month.

If you can envision a sailboat on the high seas, you can then follow the gringa as I explain how it works. A spacecraft has a solar sail. The photon thruster shoots lasers at the sail. It’s as simple as that! Well, not really, but you at least have something to work with. Tiny amounts of kinetic energy push the sail as each photon impacts the sail and then bounces off.  We would still need conventional rocket technology to launch spacecraft but, once in the vacuum of space, the sail opens and photon propulsion takes over. This means space crafts are capable of carrying a larger payload since they don’t have to carry fuel. They also have the potential of limitless distance, theoretically, of course.  Lubin expects we could reach goals like Alpha Centauri which is more than 4 light years from Earth. Take a look at what to expect next from NASA and other space agencies around the world as they all focus on how the heck we are going to get a crew to Mars:

Sources:

Popular Mechanics

www.livescience.com

www.universetoday.com

Image Credit: galacticconnection.com

 

Advertisements

The Infinite Possibilities of the Unobserved


Quantum physics is, perhaps, the craziest thing for the gringa to try to understand. Recently the results of some very interesting time experiments have been publicized when a physicist, Yakir Aharonov, published a paper on the curious things he has discovered. Since it all seems utterly impossible and to simply state the results would sound like the ravings of a gringa gone mad, I will begin at the beginning and explain the “double slit” experiment.

Tiny pieces of matter (such as atoms, atom sized objects, electrons or photons) are propelled toward a screen containing two slits. A camera is set up on the back side of the screen which records where the “bits” land.

Sometimes a scientist will close one of the slits and the camera will predict the expected pattern of where the bits will land as they shoot through the remaining open slit. (Sounds pretty simple so far.)

When both slits remain open, something called “interference pattern” occurs. That means that instead of acting like projectiles shooting forward in a straight path, the bits begin to behave in wave-like patterns (They begin to behave unpredictably. The bits is misbehavin’!).

When bits begin misbehaving in a wave-like interference pattern, crazier things can happen. A single photon goes through both slits at the same time. In other words, a bit interferes with itself. And sometimes the bit doesn’t go through either slit. What occurs to the bit on a quantum level is that the bit begins expressing a “wave” of potential possibilities. It actually expresses all the possibilities and that is why it seems to be interfering with itself. The bit gets shot toward the slits and as it approaches it says to itself, “Well, I could go through the right slot.” (which it does)  Then it says, “Or, I could go through the left slot.” (which it does) Then it says, “Or I could do neither.” (which it does) And it performs all three available options at the exact same time.

This seems impossible but Aharonov’s documented experiment proves that it does happen. What the heck does this mean for humans? Why would something like this matter about matter?

Before the gringa answers those questions, let me share another conclusion of the experiment that will blow your mind. As soon as this non-sentient (is it?) bit of matter realizes it is being observed, the wave-like effect of expressing all possibilities coalesces into one path. When the bit realizes it is being watched and measured, it makes a choice and sticks with it. Just like how someone misbehavin’ straightens up when they realize someone is watching. (Matter has a naughty streak).

Conclusion #1 – Unwatched matter enjoys every possibility of existence.

Conclusion #2 – Once matter is observed, it selects a single possibility of existence and maintains that choice.

Conclusion #3 – The simple act of observation affects how matter behaves.

Conclusion #4 – The reality that we see potentially does not exist once we are no longer looking at it.

The consciousness of humans and animals may be responsible for creating our world as we know it. Subatomic particles are responding to the visual cues of humans and animals to create the world of matter surrounding us. Although it feels and seems very real it is an optical illusion of our own creation because subatomic particles are choosing one state of existence in response to being aware of our collective consciousness’ being aware of their existence.

On a much deeper level, quantum science can then prove that the conscious efforts of humans can then shape the future and reshape the past. But that is fodder for another interesting, mind-boggling gringa discussion.

The gringa’s dear readers can view a Dr. Quantum’s video on the double slit experiment below:

 

Source: http://www.cosmicscientist.com

Image Credit: http://www.in5d.com

 

Travel To Mars & Manic Cats


When the caveman and I head south for an Amazon jungle escape in his homeland of Peru, we first have to endure a six hour flight from Houston. Since we are not made of money, we do not fly first class. And so far, I have yet to find an airline with a cuddle section in coach. Also, because of the horrible pollution in Peru’s capital, Lima, it’s location along the Pacific coastline and it’s coastal desert climate, there are only certain times of day that are suitable for flights because of smog and fog. The airport is active at night. So, getting there is not so bad. We can leave at a decent hour in the afternoon and arrive sometime after dinner. However, I have never been able to find any other flight back to the states that is not scheduled in the red-eye hours. This makes homeward air travel a grouch inducing event.

The gringa’s return trip experience usually goes something like this:

  • 10pm – Arrive at the airport
  • 12am – Settle into my airplane seat
  • 12:30am – Take off and read until I’m sleepy
  • 1:30am – Attempt to go to sleep which involves my travel neck pillow hanging in front to avoid the forward head bob which usually never really works so eventually I dig out a scarf and tie my head to the headrest
  • 2am – After tying my head to the headrest, I now have to pee after all the bending and twisting has tortured my bladder.
  • 2:15am – Re-tie my head to the headrest after returning from the bathroom. Discover I am wide awake. Untie my head and begin to read.
  • 3am – Tie my head to the headrest and try to sleep which involves fits and spurts of dozing off then those little jumps a body makes as you merge into deep REMs, wake up frightfully scared then embarrassed, need to pee again, blah, blah, blah.
  • 5am – Flight attendants come around with breakfast and I give up completely on sleep since now there is food involved.
  • 6am – Arrive in Houston where I am an absolute grouch until I collapse in my bed when I get home.

And that’s a “good” trip. One time we went and the air conditioner vent, those little circular doo-hickies up where the reading lights are that can pivot around? Well, the passenger in front of me had his on full blast and every now and then it would start spitting ice out and the angle was perfect for me getting shot in the eye about every thirty minutes or so. Just long enough for me to let my guard down, thinking that the other time it happened was just a fluke, then, “BAM”, right in the eye again. Oh, boy, I tell ya the gringa was spitting mad.

Then there was the time these three brothers were traveling together and they were all drunk as skunks. They wouldn’t stay in their seats. They would stand up, arms around each other, sing songs in Spanish, sometimes Portuguese, then hug and cry. I don’t know what they were singing about, maybe about their women that left them because they were loud and obnoxious drunks, but, eventually, one of them got sick right in front of the poor lady that was seated by the emergency exit. You how those seats that have all that extra space in front of them in the middle of the cabin? Yeah, he walked right over there and heaved. Then the lady screamed, jumped up, stepped in it, got so upset, tried to yell, gagged, then she puked. The flight attendant’s solution? Scatter a bucket of coffee grounds over it. Yeah, good times.

Which brings the gringa to the hopeful news out of NASA. I’m talking about their groundbreaking laser propulsion system. They are claiming that if the technology works, eventually crews could reach Mars in a matter of days. I’m guessing if that technology was put to use to get me to Peru a trip would be about as fast as Star Trek’s transporter technology. That sounds sensational to the gringa. No more dodging ice pellets or dealing with drunks or tying my head to the headrest and arriving home grumpy as a mad, wet cat.

So how does this laser propulsion business work? Scientists have known for some time how to propel objects at light speed. The reason this is not done with current spacecraft is because they are too heavy. Their weight creates all kinds of complications. Laser propulsion takes liquid fuel cargo out of the picture which drastically reduces the weight making light speed, then, a possibility, or at least a quarter of light speed a possibility. At that rate, a spacecraft could reach Alpha Centauri within 15 years. That’s a star about four light years away.

With that in mind, then, a spacecraft that weighs about 100 kilograms/220 pounds could reach Mars in about six months, give or take a couple of months either way. So, to get serious about space travel, we’ve got to speed up transit time.

The laser propulsion system is called “photonic” propulsion, but laser just seems a word most people immediately can visualize. When I think of laser propulsion, I envision spacecraft zipping through the skies like a flash of light and all the cats on Earth will end up with manic disorders. Many will injure themselves attempting to launch through windows at the laser light displays crisscrossing the skies. There may be troubling and dangerous times ahead for cats and cat lovers. But, heads up to the gringa’s more innovative readers. This could lead to a niche market in cat care products for kitties that are suffering from spacecraft laser related mania.

But, I digress, to get back to how it all works… rather than one giant laser shooting a spacecraft off into the heavens, multiple lasers would propel an aircraft. Multiple amplifiers would then combine the power of the individual laser to create a singular beam powerful enough to propel the craft. And, guess what… the technology already exists! Scientists and researchers only need to develop and test the technology with actual aircraft and spaceships.

Scientists and engineers are very excited because they know this idea will work. They have small amplifiers that are about the size of a school book. What they really want is an array of amplifiers floating in orbit around Earth in a six-square-mile configuration. That’s what it would take to shoot a black-eyed pea to Alpha Centauri. Um, the gringa’s going to need a little more room than that on a trip to Mars. I’m just sayin’, ya know.

Although the necessary scope of how large an array really needs to be sounds absolutely outrageous, like, perhaps an array covering hundreds of square miles and orbiting the earth, scientists still believe it is do-able. And yet, with all of this good news, there is one little problem the scientists save to the last to mention.

That would be the sticky issue of how to put on the brakes. I mean, what good is it to send a satellite or probe blazing a light speed path through space if it can only pass through, never being able to slow down and click a couple of snapshots or collect some atmospheric gas samples or drop off a few passengers? It ends up just being a real expensive slingshot with old, highly educated kids playing around with it.

And, if a craft can’t slow down, how in the heck could it maneuver around space debris? That pea shaped probe will get obliterated the first time it comes up against a chunk of space ice the size of a nickel. So, the gringa says, “Well, scientists, sounds like you folks need to get back to the drawing board. At first I was very excited and now I’m just aggravated that you got me all excited for nothing. I am not interested in a light year speed fly-by to Mars or a light year speed crash landing suicide mission.”

That’s when the scientists remind us of another option. We could use the array for protection. Yes, we can zap asteroids and space debris that threaten Earthlings. See, I told you Earth cats are in for it.

 

Source: http://www.nasa.gov

image source:   http://www.spoki.tvnet.lv

 

 

 

Hello Over There


Science is fascinating although there is much of it that is way beyond the gringa’s limited understanding. I guess that’s why I am a big fan of science fiction. It doesn’t matter if it makes sense or not, it is pretend science for the sake of entertainment.  However, it seems that sometimes the two intersect and then I just don’t know what to think.

I have often watched science fiction movies, or read science fiction novels, that were set in a parallel universe. Now, some physicists have revealed that the existence of a universe parallel to our own may not be a fictional idea. It may be real!

They call this the “Many Interacting World” (MIW) theory. And it means much more than just the existence of multiple worlds. It contends that there are actually multiple universes and that they interact with one another on a quantum physics level.  So, then I only have to understand what quantum physics is!

The simplest definition of quantum physics explains that it is a branch of science that studies the behavior of matter like atoms and photons. So, basically the MIW theory premise is that atoms and the minutest particles of parallel universes interact with one another.  So, basically, everyone and everything here on Earth is being touched, albeit invisibly, by another world.

Now, consider the gringa’s September 2, 2015, post, “What’s The Matter With Dark Matter”. There we learned that dark matter is invisible and passing through Earth all the darn time. This is pretty much the same concept except rather than just passing through and minding their own business, parallel worlds may, at times, actually interact with our own.

This theory has been developed through performing mathematical calculations as well as understanding how energy waves behave. You see, sometimes strange things, inexplicable according to our known scientific understanding of matter, occur when messing about with quantum mechanics’ experiments. When applying typical cause and effect principals that work on Earthly matter to a quantum mechanics’ experiment, the expected result does not occur. The oddities are explained as being due to the possibility of a parallel universe interacting in a subtle and non-detectable way to affect the outcome of the experiment.

The gringa wonders if this is a form of communication. What if one of these parallel universes is further advanced than our own and is aware of not only our existence, but also of our quantum physics experimentation? What if they observe these experiments (through dark matter spy molecules zipping about unbeknownst to us lower developed humans) then poke their nose in and interfere in such a way as to leave us scratching our heads, wondering what the heck just happened so that we will suspect outside interference from another world. They could be trying to get our attention! And scientists are definitely on high alert.

In the 1950s Hugh Everett, an American physicist, explained that quantum particles are not limited to a single state. At the same time, they can be in two states. That would be like saying, at the very same time, your stomach is empty yet also full. He called this the “many worlds” theory and suggested that quantum particles occupy two places at the same time, co-existing in two different realities. This means that, for each particle:

  • A single version of reality could branch out into infinite branches of alternate realities.
  • An alternate reality is a separate existence.

The point of difference between the “many worlds” theory and the MIW theory is that the “many worlds” idea premises that individual realities are not able to interact with one another while MIW speculates that parallel universes overlap one another and can influence each other.

The MIW theory claims three critical points:

  • There are possibly an infinite number of universes and some may be virtually identical.
  • All universes are equally real. (Imagine, another gringa out there! I wonder if she is my arch-nemesis and an evil tyrant? Maybe she’s a ballerina! With my luck she’s probably a chicken sexer… Yes, that is actually a job at chicken farms!)
  • There is a magnetic law of repulsion that prevents universes from interacting. (Hence the theory that the other gringa is a “repulsive” evil tyrant.)

Which brings me to ask if meditative practices that create altered forms of consciousness are putting people into contact with beings just as real as us but in a parallel universe, rather than in contact with a spiritual being. Could the MIW theory solve many religious questions about what exactly is an angel, deity or jinn? Could they actually have been beings, just as real as you or I, who existed in a parallel universe that was more highly advanced and had the technology to communicate with our universe? Could they have stopped in to say “hello”, saw what a mess we had made of things, sent messengers for centuries to try to teach us to be better, then finally gave up on us altogether?

Are they spying on every single one of us all the time? Brings the concept of “personal space” to a whole new level. The gringa will never again know the satisfaction of picking my nose in the privacy of my own powder room. Overindulging in an insomniac episode of chocolate while everyone else sleeps will never again seem a secret victory. Who knows, we could all be the reality TV stars of another world!

 

Sources: www.themindunleashed.org, www.mnn.com, www.phys.org

Image credit:  http://www.wn.com

 

 

 

Quantum Science Stuff


What word SCREAMS fascinating, mystifying science? Quantum. Webster’s dictionary says, with regard to physics, quantum means the “smallest amount of any form of energy (such as light)”.  NASA is into all sorts of quantum science stuff. Let’s take a stroll through some of NASA’s quantum interests.

NASA has a quantum computing lab. The gringa asks, “What does it do? What does it do?” Located at the Advanced Supercomputing (NAS) facility in California, NASA’s Quantum Artificial Intelligence Laboratory (QuAIL) is studying the computer of the future and how this technology is relevant to the future of mankind. Collaborating with Google and the Universities Space Research Association (USRA), technology is being developed to not only optimize existing computer technology, but to go beyond and create computers that can do what was before considered impossible.

Again, the gringa asks, “Like what?! Like what?!” (You can picture my little dance, hopping from one foot to another, flinging my hands up and down, as I impatiently ask this question). Well, how about “quantum teleportation”? The gringa says, “WHAT?! Are you KIDDING ME?” (now hopping straight up and down on both feet).  The cute little cartoon above illustrates how the technology works.

If visuals aren’t your thing, the gringa will try to convey the concept. Imagine you have eyes that can see things as tiny as itty, bitty particles, which is what makes up everything in our world. Now, consider that there are two particles that, although separated by an incredible distance, they behave as if they are connected (kind of like a married couple). This is called entanglement (yeah, like I said, kinda like a married couple).

What scientists have done with this concept is teleported information about a particle of light over fifteen miles of optical fiber to a crystal “memory bank”. Voila! Quantum teleportation.

However, the gringa is no longer jumping up and down. I’m scratching my head and thinking, “So what!” I mean, it doesn’t really sound like a big deal. It doesn’t even sound like real teleportation to me. I mean, it traveled through a conduit, the optical fiber. I’ve seen enough episodes of Star Trek to know real teleportation means you simply vaporize, POOF, and rematerialize somewhere else. What a let down.

The gringa really doesn’t want to get shot through an optical fiber skinnier than a human hair to make a quick trip to the mall. It would make me feel like a drive-thru bank deposit. I was really looking forward to the POOF and re-materialization thing. I mean, you could strike a pose and really create a fantastic entrance wherever you went.

The “real-life” application of this technology is that it has potential to be used in cryptography. However, not only will it create secure information transmission between computers here on Earth, but also between Earth and spacecrafts. This would be done by imprinting two systems upon each other so that even when they are separated they behave as one system and, thus, unhackable (is that a word?).

So, with a quantum computer system Astronaut Annie can send a love note from Mars to Hubby Harry back on Earth and it would be as securely private as if they were writing love notes back and forth on the same pad of paper across the breakfast table from one another. Okay, the gringa does have to admit that is entirely cool. Hackers terrify me. I’m always afraid they’ll hack into my bank account and get my last five dollars (that’s usually all that’s ever in there, except for payday and maybe one day after, but, yeah, the rest of the time about five bucks).

Now, how this works is like this:  Alice has a yellow photon. She wants Bob to have one just like it. Their friend, Charlie, sends them each a blue photon (these photons are “entangled”, hence the same color).  Now, the rule of entanglement is since the objects are connected, anything done to one affects the other in the same way, as if they were one object. Alice smashes her blue and yellow photons together until the yellow residue dominates the blue. Now, Bob likes the color yellow better than blue so Alice wants to help him change the color of his photon. So, she teleports the information of the color yellow to Bob’s crystal memory bank and the color information imprints on Bob’s photon which now turns yellow.

So, in a nutshell, quantum teleportation is not anything like Star Trek’s device. Does that mean Star Trek technology is impossible? Um, this is NASA, NOTHING is impossible! The concept of the Star Trek transporter is that it changes matter into a signal that can be transmitted to another location and reappears. What this requires is an empty vessel of a corresponding shape waiting on the other end to receive the quantum state of transported information. So, transport a human body? Probably not. However, lay down on a transport bed and beam your consciousness into, say, a robotic version of yourself, could be.

If technology is developed to transport matter through space, what about transporting through time? Is time travel possible? Nope, not unless we get us some wormholes. And, even then it is still only a theory.

Communication and transporting matter is not the only technology that has something “quantum” about it. In medicine there is a device called the Quantum Resonance Spectrometer (QRS). It gathers cellular information from a human body which can be used to predict when a disease may strike based on an analysis of cellular change. The hope is that as this technology is perfected it will be used in preventative medicine. Japanese, Taiwanese and Chinese hospitals are already using the technology in studies of cancer, cardiovascular and heart diseases.

How about quantum energy? Can we say good-bye to oil, coal, and wind power? Maybe. NASA is developing the “quantum dot” solar cell that is flexible, lightweight and absorbs light as if it were a mini-black hole on a sunshine diet. Because of the abundance and availability of solar energy in outer space, imagine the prospects! NASA wants to use these babies on rovers and habitats as well as auxiliary power sources.

The quantum dot not only reduces weight because of it’s tiny, microscopic size that efficiently produces energy, but it also lowers the cost of space travel. The cells can be produced in a process much like ink jet printing. Large batteries that take up a lot of cargo space can become a thing of the past. Can you imagine if cars no longer needed a gas tank? No more oilfields! Hoorah! Hoorah! What is NOT to love about this technology!

So, what is the next thing on the horizon with “quantum science stuff”? How about a world-wide quantum network? If we thought the invention of the Internet was an amazing thing, the gringa says, “We ain’t seen nothin’ yet!”

 

Source & Photo Credit: http://www.nasa.gov