Space For Europe IS the ESA


With ESA Astronaut Tim Peake performing a spacewalk this week on the International Space Station, the gringa thinks it’s only fitting to turn the limelight toward Europe’s space agency and their long history of achievement. The European Space Agency (ESA) is to Europe what NASA is to the United States, JAXA is to Japan and Rocosmos is to Russia. ESA is comprised of 22 member states who collaborate with their financial resources and intellectual talents to provide a gateway to the stars for all of Europe. Members are: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Canada, Bulgaria, Cyprus, Malta, Latvia, Lithuania, Slovakia and Slovenia all make their own contributions as well through contractual agreements of cooperation.

The goals of the ESA are to discover more about Earth and its surrounding Solar System, as well as the entire Universe. These goals are met while at the same time promoting development of European technologies and sharing these with the world’s other space agencies.

Paris is the location of ESA headquarters. Germany is where ESA’s Astronaut Centre and Space Operations Centre are located. Astronomy Centres are found in Canada and Spain with the Earth Observation centre in Italy. The UK houses the centre for Space Applications and Telecommunications and launch bases are scattered throughout Belgium, the U.S.A., Russia and French Guiana. It can be rather dizzying with all of these operational centres spread all over the world. So, to keep things simple, because the gringa likes simple, for more information about ESA, simply go to their website, www.esa.int, or drop them a line or pick up the phone:

Communication Department
European Space Agency
8-10 rue Mario Nikis
75738 Paris
Cedex 15
France

Tel: + 33 1 5369 7155
Fax: + 33 1 5369 7690

ESA desires to explore space for peaceful purposes. While doing this it wants Europeans to benefit economic growth from the support services required to travel to the stars. Since its conception over thirty years ago, ESA has focused on long-term goals that are adaptable to a world that changes rapidly. The gringa wishes to highlight just a smattering of successful ESA missions:

  • ESRO-4, 1972: The ESRO-4 (European Space Research Organisation) satellite carried five experiments concentrating on Earth’s ionosphere, atmosphere, radiation belts and penetration of solar particle radiation into the magnetosphere. It was launched on 22 November 1972, on a NASA Scout rocket from the Western Test Range in California, and reentered Earth’s atmosphere after a successful mission on 15 April 1974.
  • 1977-2002 Mission Meteosat: launched multiple weather satellites
  • 1979 Mission Ariane: first launch of commercial launcher to secure Europe’s independent space access
  • 1983 Mission Spacelab: launched laboratory module for NASA’s Space Shuttle
  • 1985 Mission Giotto: intercept of Halley’s Comet and Comet Grigg-Skjellerup
  • 1990 Mission Hubble Space Telescope: ESA contribution of solar arrays and Faint Object Camera for Hubble Space Telescope
  • 1998 Mission ARD: launch of first European experimental re-entry vehicle
  • 2003 Mission Mars Express: launch of Europe’s first Red Planet orbiter
  • 2005 Mission Venus Express: launch of Europe’s first Venus orbiter
  • 2008-2012 Mission ATV: launch space truck for ISS re-supply
  • 2015 Mission Lisa Pathfinder: launch of technology to detect gravitational waves

Which brings the gringa to the current ESA Mission, “Principia”.  This six month mission is named after Isaac Newton’s book on physics, “Naturalis Principia Mathematica”. Peake’s mission objectives are to maintain the weightless research laboratory, conduct over thirty scientific experiments, and perform a spacewalk with fellow crewman Astronaut Tim Kopra, working together to replace a Solar Shunt Unit.

Preparing for the spacewalk involves breathing pure oxygen for two hours (to purge nitrogen) before embarking. Once spacesuits are donned, the astronauts enter an airlock where air pressure is gradually reduced until they can safely exit the ISS.

Upon successful completion of Mission Principia, ESA will then turn its attention and efforts to the next scheduled mission, Mission Exomars. Later on this year ESA will launch a Mars orbiter, rover and surface platform to the Red Planet. The gringa is so excited! To Mars! To Mars!

 

Source and Photo Credit:  www.esa.int

 

Advertisements

Allow Me To Introduce You To JAXA


Who is JAXA? JAXA is the Japan Aerospace Exploration Agency and they have been very busy. In 2010 JAXA was disappointed when their orbiter “Akatsuki”, which, in  English, means “dawn”, failed in its mission to orbit Venus. However, JAXA is not one to give up. The agency kept at it for five years and finally, in December, accomplished its mission.

Now that Akatsuki is orbiting Venus its cameras are transmitting a steady stream of images. One orbit cycle takes about thirteen and one-half Earth days. JAXA is tweaking its orbit path to eventually get its orbit cycle to nine Earth days. That will result in Akatsuki being closer to Venus which will improve the clarity of the images it sends back to JAXA.

Venus is a hot, volcanic planet that is about the same size as Earth. And, when I say hot, the gringa means hot enough to melt lead. Akatsuki will gather data on the weather and atmosphere of this steamy planet. Scientists are interested in the volcanoes.

JAXA operates all missions with the purpose to help create a safe society that can utilize space. The agency seeks to be a leader in technology and have technology used wisely for the benefit of society. The Japanese believe that as humans evolve, happiness should increase. JAXA is inspired to overcome the difficulties facing mankind. They intend to act responsibly to meet the expectations society has for the work the Agency performs. The slogan JAXA operates under is “Explore to Realize”.

JAXA desires to contribute to the well being of all people on Earth through their research and development. They believe this can be achieved by improving quality of life, providing safety and security, developing sustainable methods for living, and expanding the knowledge of all peoples.

JAXA was established in October of 2003. The following Spring the agency successfully performed its first series of flight tests for their Stratosphere Stationary Platform. Since their first successful test flights, JAXA has continued to perform successfully. Just a few of their many accomplishments throughout the years:

  • July, 2005, the agency launched “Suzaku”, an X-ray astronomy satellite.
  • July through August of 2005 Japanese Astronaut Souichi Noguchi joined the NASA Space Shuttle “Discovery” mission.
  • December, 2005, JAXA made history with the first EVER optical inter-satellite communication between Optical Inter-orbit Communications Engineering (OICETS) and the Advanced Relay and Technology Mission “ARTEMIS” of the European Space Agency (ESA)
  • 2006-2007, successfully launched eight different space vehicles
  • March, 2008, Astronaut Takao Doi served aboard NASA Space Shuttle “Endeavor” on mission to attach Experiment Logistics Module-Pressurized Section (ELM-PS) of JAXA’s Experiment Module “Kibo” to the International Space Station (ISS)
  • June, 2008, Astronaut Akihiko Hoshide served aboard NASA Space Shuttle “Discovery” on mission to attach Pressurized Module (PM) and Remote Manipulator System of JAXA’s Experiment Module “Kibo” to the ISS.
  • July, 2009, Astronaut Koichi Wakata attached Exposed Facility of JAXA’s Experiment Module “Kibo” to ISS. First Japanese Astronaut to complete a long-stay mission and returned home aboard NASA Space Shuttle “Endeavour”
  • December, 2009, Astronaut Souichi Noguchi served aboard Russian Soyuz spacecraft on mission to ISS, completed long-stay mission, returning to Earth June, 2010
  • June, 2011, Astronaut Satoshi Furukawa served aboard Russian Soyuz spacecraft on mission to ISS and returned to Earth November, 2011
  • July, 2012, Astronaut Akihiko Hoshide served aboard Russian Soyuz spacecraft on mission to ISS, returning to Earth November, 2012
  • November, 2013, Astronaut Wakata served aboard Russian Soyuz spacecraft on mission to ISS. March, 2014, Astronaut Wakata became first Asian commander of ISS. Returned to Earth May, 2014

JAXA has big plans for 2016. It expects to launch the Mercury Magnetosphere Orbiter (MMO) after it successfully completes a round of tests performed by the European Space Agency (ESA). It will launch from the Guiana Space Center in French Guiana.

It is also committed to being an active world partner in resolving the many issues humanity must resolve that are related to climate change. JAXA will use the ALOS-2 satellite to monitor and collect data related to deforestation. All data will be available to everyone worldwide through open access on the Internet.

JAXA aims to develop a tracking system for tropical forests. JAXA will be joined in its efforts by the Japan International Cooperation Agency (JICA) and many private corporations. By constantly monitoring worldwide forest loss, the agency hopes that this initiative will lead to successful conservation solutions. A public access website should be up and running by March, 2017 and will be updated every six weeks with the latest findings.

Goals are to restrain illegal logging and conserve forests that are critical to help reduce the effects of climate change. During 2009-2012 Brazil was cooperating with monitoring efforts. Over 2,000 incidents were revealed and action was taken that helped reduce the destruction of forests by forty percent. It is clear that this effort and mission JAXA is undertaking is a significant contribution to the future security of humanity by helping to minimize the effects of climate change.

With agencies like JAXA looking out for the interests of people all over the world, the gringa is confident that this place we all call home has a future where there is great hope. The international cooperation of so many space agencies is an inspiration that we can become a global community where our differences are not obstacles, but, rather, strengths. Because the gringa thinks the world would be a very boring place if we were all alike.

Source & Photo Credit: www.global.jaxa.jp

NASA Needs You!


Do you love anything that flies? Are you also a person who can organize and plan just about anything that, to others, seems a chaotic mess? Then NASA needs you.

Perhaps you like robots. Perhaps you like robots so much you’ve even stepped up your game and have built a few. Maybe you’ve got some big ideas and spectacular dreams but don’t know what to do with them. Well, NASA needs you.

Do you enjoy go-carts? Ever driven them? Worked on them? Built one? Did you enjoy all that tinkering? NASA needs you!

Are you a computer geek? Do you fantasize about putting all that keyboard pecking to use for the future of all humanity? I’m tellin’ you, NASA needs you!

Do you stargaze, with or without a telescope? NASA needs you!

NASA has all sorts of active challenges. These are opportunities for the general public to show the space agency just what they’ve got! Here’s your chance! You’re big break! If you have a crazy lab or workshop that you escape to where you invent all sorts of weird gadgets, you simply must read on because the gringa has got a treat prepared just for you! (Or a friend of yours, you can always pass the info along!)

Listed below are just a few of the current active challenges NASA has extended to the general public. Click on the links and explore NASA’s website if any of these challenges appeal to you!

  • “Sky For All: Air Mobility for 2035 and Beyond”. Develop ideas and technologies for the airspace of the future. Solve problems of air traffic management that will be dealing with crowded skies way beyond what we have today. Consider in your designs autonomous operations and cyber security. As a design for the future, twenty years from now it will not just be commercial airlines in the air. There will also be personal air vehicles, unmanned aircraft (drones), spacecraft and even stationary objects (such as wind turbines).

Future expectations is that air traffic management systems will be managing more than ten million aircraft in the skies. More than anything, this project is about public safety and also plans for poor weather conditions.

This challenge has a payout of $15,000 for the winning design. It is administered by HeroX and sponsored by NASA’s Aeronautics Research Mission Directorate (ARMD). Registration officially opens December 21 and submission deadline is February 26, 2016.

  • “Swarmathon” Challenge is a robotics competition scheduled for April 18-22, 2016, at Kennedy Space Center in Florida. There are openings for 35 on-site teams and 23 virtual teams. The goal is to create cooperative robots that can operate autonomously on Mars.
  • “Human Exploration Rover” Challenge is open for student teams. It is organized by NASA’s Marshall Space Flight Center in Huntsville, Alabama. International team deadline is January 11, 2016. U.S. team registration deadline is February 8, 2016. The competition will take place April 7-9, 2016 at the U.S. Space & Rocket Center in Alabama. High school age and college age students are eligible to compete. They are to design, build and drive a human-powered rover that will navigate an obstacle course that will simulate the terrain of Mars. Interested U.S. students should contact Diedra Williams, (256) 544-5721, or send her an email at a.williams@nasa.gov. International students that are interested should contact Amy McDowell, (256) 544-8411, or send her an email at amy.mcdowell@nasa.gov. For more information, visit http://www.nasa.gov/eduation
  • “Sample Return Robot” Challenge wants innovators to build robots that can operate independently to locate, identify and collect samples, and return them to a location without the need of GPS or other navigation aids, within a specific time. This challenge is sponsored by Centennial Challenges Program. It awards $1.39 million dollars to the winning design. This is an ongoing annual challenge. Registration closes every January until this challenge is won. Level 1 Competition is scheduled for June, 2016 and Level 2 for September, 2016. For more info visit http://wp.wpi.edu/challenge and also visit nasa.gov/robot
  • “Enterprise Search Engine” Challenge seeks to improve search capabilities of its new search engine. The challenge awards $50,200 to the winning design. This specific search engine targets the day to day data gathering requirements of NASA employees. The challenge wants the design to enhance filtering, geolocation, content and imagery, among other things. This challenge closes February 10, 2016. For more information, visit topcoder.com
  • “Aurorasaurus.org” Challenge is for stargazers who enjoy the challenge of finding the aurora and helping others to see it, too. This challenge is sponsored by the National Science Foundation INSPIRE program. Awards are available and monthly badges can be earned. This is an ongoing challenge that is scheduled to be open indefinitely. There is no limit to participation. For more information, visit aurorasaurus.org.

These are not the only challenges that are going on right now. NASA is always updating their website with new challenges. Visit www.nasa.gov/solve to see what is currently happening. If any of this kind of stuff interests you, get involved. Some of these challenges, like the Aurorasaurus challenge, are great family projects. All you need is time and a willingness to sit out under the stars with your loved ones. And that is a challenge the gringa can most certainly win!

 

Source and Photo Credit: www.nasa.gov

 

 

“Back Up Life…”


SpaceX is the private company that is contracted with NASA to supply the space agency with the “Dragon”, a crew transport spacecraft designed for large crew capabilities as well as deep space missions. Elon Musk, the creator of SpaceX, recently gave an interview with GQ magazine. In that interview he voiced his concerns regarding accomplishing the Mars mission in light of the fact that this world’s nations just can’t seem to grow up and stop all of this war mess.

Musk’s big dream is to colonize Mars. Considering his accomplishments, the gringa believes he can achieve his dream. I mean, just think about it: he leads a company that has managed to develop technology that can design and build rockets at a fraction of the cost as NASA. SpaceX is also the first private company, ever, in all of the world, to have launched a spacecraft into orbit and have it successfully return to Earth. SpaceX has impressed NASA so much that it is contracted to manage resupply missions to the International Space Station as well as transport the astronauts between the ISS and Earth.

Musk believes colonizing Mars is more than just a glamorous adventure. He believes this mission is critical to the ultimate survival of the human species. Considering how mankind has been consistently annihilating one another since a caveman first created a club to sock it to his romantic rival, the gringa has no trouble at all believing Musk’s worst-case scenario of a natural or man-made disaster destroying life as we know it on Earth and the survivors starting over somewhere else. Why not Mars? Musk’s philosophy can be summed up in this statement, “You back up your hard drive… Maybe we should back up life, too?”

In addition to reusable rocket technology and personnel space ferries, SpaceX is developing “Mars colonial transport architecture” to further advance toward the ultimate goal. The gringa asks, “What the heck is that?”

A critical piece of this architecture is commonly called the BFR rocket (it has a technical name but Musk and the developers refer to it as BFR). Now, the gringa likes to keep things family friendly on these blog posts, but, just so you know, BFR actually stands for Big F*#@ing Rocket. I MEAN IT! No kidding! I love that! Scientists that have a sense of humor are right up the gringa’s alley.

The BFR is a two part rocket, booster rocket + spaceship. The booster is to break through the gravity and atmosphere of Earth. Once free, the spaceship is designed to travel through deep space to Mars. The gravity of Mars is weaker than Earth’s and also has a thinner atmosphere. Because of this the spaceship does not need a rocket booster to blast off from Mars for a return trip home.

In order for Martian colonists to create a self-sustaining environment on the Red Planet, what must be done? The planet has to be terraformed to create a warmer environment that will lead to ice melts so that it becomes a “watery” planet. Then fauna can be introduced that will help to create a breathable atmosphere. Musk considers Mars to be a “fixer-upper”. The gringa likes that term.

Nuclear energy could be used to help warm the planet. By converting technology that has been used to destroy life, the fusion bomb can be repurposed into technology that creates and sustains life (now, the gringa LOVES that!). As tiny pulsing suns at each Martian pole, this technology would create a warming effect without radiation and fallout. Mars would then experience the same benefits Earth has from its proximity to the Sun.

Now, NASA is devoted not only to preserving life on the planet Earth, but any life that may possibly be present throughout the cosmos. It has a Mars directive in place forbidding any mission landing near any area containing the potential for liquid water. That is because of the possibility of the presence of bio-organisms, life, causing cross-contamination, whether those organisms are of Earth and contaminate Mars or vice versa.

The good news, as far as the colonial mission goes, is that NASA’s research has not detected any life present on Mars, even on the microscopic level. So, if it is eventually determined that no life at all exists on Mars, the moral dilemma of invading, contaminating and/or destroying it is resolved and colonization can get the green light. The only life on Mars that might exist that NASA’s current research methods are unable to detect is subterranean microbial life.

So, who would like to give the pioneering life a shot and actually become a MARTIAN?  The gringa says, “Where’s the sign up sheet?”

Now, it’s pretty clear that Musk is the type of personality that is driven. There is very little that seems to get in his way when he has set a goal. His biggest concern regarding achievement of colonizing Mars is the very real reality of war. The Earth has never seen a single day in modern history where there has not been an active war somewhere. War could be the very thing that prevents progress.

War stood in the way of progress in the early 1900’s. It was supposed to be a golden era with no more war. Then, guess what? BAM! World War I started. Then World War II. Then the Cold War. However, the Cold War eventually led to the space race, so progress did come of that mess.

How possible is it, then, for progress toward colonizing Mars be disrupted? Pretty darn possible. So, the gringa says to all the religious zealots and war profiteering warmongers everywhere, “JUST STOP IT! KNOCK IT OFF! WE ARE SICK OF IT!”

Now, I know you must be itching to see just how much more fantastic Musk’s dream can get. Well, just check out his timetable. He is determined for all of this to be accomplished within his lifetime. If Musk gets his way (and he seems very apt at always getting his way) the world could see the first boots on the ground on Mars within the next ten to fifteen years.

In fact, before the end of 2015, or early in 2016, he plans to make a big announcement regarding his Mars-colonization plan. The gringa cannot wait to hear this crazy plan because I’m a crazy gringa who is his biggest fan!

 

Source: www.gq.com

Photo Credit: www.joserojas.org

The “Little Green Men” Star


If you happen to be a writer looking for fodder for a great science fiction story, you may want to delve into NASA reports regarding star KIC 8462852. NASA is fascinated by the strange goings on about this star and bears much resemblance to a pulsar named LGM-1 (Little Green Men). This pulsar emitted strange signals that created a stir within NASA and were ultimately determined to be a natural phenomenon. The strange events involving star KIC 8462852 have yet to solved.

Monitoring this star has been the responsibility of the Kepler mission for the past four years. In 2011, and later in 2013, two significant, and as yet unexplained, events took place. What do scientists really know? They know that the star dimmed because “something” passed in front of it large enough to block its light. The gringa says, “What the heck?”

In September scientists finally reported their theory and findings on what could possibly explain these strange events. They are blaming a “swarm” or “family” of comets. The gringa’s imagination begins whirling and thinks, “Or perhaps a fleet of starships.” Another theory suggests a cluster of planetary fragments and asteroids.

Scientists are using NASA’s Spitzer Space Telescope to probe deeper into this mystery. To learn more, scientists, who first studied the star using observations conducted in visible light, then tried using infrared light. This is because if asteroids were involved and actually impacted the star there will be a whole bunch of infrared light surrounding the star and the dusty old bits of gravel from a pulverized asteroid should be at the perfect temperature to glow like a firefly under infrared wavelengths.  And detecting infrared light is one of things the Spitzer Space Telescope is designed to do.

This year the Spitzer took a gander at star KIC 8462852 while looking at hundreds of thousands of stars in its search for planets. One thing in particular that Spitzer was looking for was infrared emission of space dust that encircled stars. Spitzer didn’t find any of this type of dust around star KIC 8462852 so scientists think the asteroid collision theory can probably be scratched.

So, the gringa wants to know just what their thinking is now. What the scientists seem to be leaning toward is the possibility of a “swarm” of cold comets. For such a theory to work, this cluster of comets would need to have an unusually long orbit around the star. They also call this theoretical comet cluster a “family” because it would require a “pack leader” to explain some of the phenomena. The larger “big daddy” that would be in the lead would have been the one to block the star’s light in 2011. In 2013 the rest of the family would have been passing through in front of the star and blocked the light again in the strange pattern that was recorded.  This would explain why in 2015, when Spitzer observed the star again, there were no infrared signatures. The comet “swarm” was long gone and probably around on the other side of the star in its orbit progression.

The gringa must confess to thinking, “Mm hmm. Scout ship shouts, ‘The coast is clear!’ and the support ships soon set a course for the coordinates.” Oh yes, what an imagination! But please don’t judge the gringa! I just couldn’t help myself when NASA itself goes and names a pulsar something like “Little Green Men-1”.

NASA admits that what is going on with this star is strange and not understood. Their interest is extremely piqued so study and research will continue until the curiosity of these scientists are satisfied. And I ask you, is that not the greatest job ever? For every little kid that has lain on their back in the grass in the dark of the night staring up at the stars and wondering if there really are “little green men” out there, is that not just the coolest job ever to grow up and get to do!

Source & Photo Credit: http://www.nasa.gov

 

 

 

Maaahhhvelous MAVEN!


Yesterday was an important anniversary at NASA. Celebrations were in order to mark a successful year of the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft orbiting the Red Planet fulfilling its mission of understanding the upper and lower atmospheres of Mars. Scientists want to know how Martian atmospheric gases that escape into space change the climate of the planet. The ultimate question is whether or not the pattern of atmospheric evolution can trace back to an ancient history where life could once have been supported there.

MAVEN inserted itself into a Mars orbit in September, 2014 and had a dangerous encounter with Comet Siding Spring within its first month in action. Over the past twelve months, MAVEN has carried out and recorded atmospheric observations for ten of those months.

It has detected a pattern of particles at both poles that create a “Mohawk” effect as they escape the atmosphere in plumes. Mars also has a metallic particle layer high in the atmosphere which lights up when affected by solar storms. These particles are leftovers from space rubbish left behind by comets and meteorites. The gringa thinks Mars would be the perfect place for some rock-n-roll concerts.

The violent atmosphere of Mars is punctuated by solar and space radiation, magnetically and electrically charged solar flares and Coronal Mass Ejections that strip the upper atmosphere of Mars of electrically and magnetically charged ions. The data collected on MAVEN can be analyzed to hopefully answer the question if this is the reason for atmospheric loss on the Red Planet and if so, scientists will then attempt to establish a time frame for the continued erosion of the Martian atmosphere.

NASA is very proud of the teamwork that has produced such a successful Martian mission as the MAVEN project. Engineers designed and built a sturdy spaceship that remains in excellent working order despite the extreme conditions it functions within. Although mission completion date is only months away, it is expected that the mission will be extended. The rich amount of data for a hungry science community is too valuable to give up as long as MAVEN is still operational. NASA will be giving the green light for this little workhorse to stay on the job at least one more year.

Source & Photo Credit: http://www.nasa.gov