So Where Are All Those ETs?


Fermi’s Paradox is a theory named after Italian physicist Enrico Fermi (1901-1954) who, during lunch with a fellow scientist, posed a question kind of like this, “Where the heck are the aliens if they are supposed to exist?” The premise of his theory goes something like this:

  • Billions of stars similar to our Sun exist with many of them billions of years older than our own planet.
  • It is highly probable that some of these stars would be orbited by Earth-like planets with conditions that could lead to the development of intelligent life.
  • If intelligent life developed on these older “Earths” their respective civilizations might have developed interstellar travel and have already begun investigating Earth.

Combine all these facts and you come up with the conclusion that Earth should have already been visited by ETs. So, like Fermi said, “Where is everybody?” Despite mankind’s best efforts Fermi could not find any credible evidence of alien visitation. The conclusion then must become that the existence of intelligent life is:

  • Extremely rare, or…
  • Alien intelligent civilizations have not contacted Earth.

In 1961 a scientist by the name of Frank Drake took Fermi’s 1950 theory and applied a mathematical formula to the probabilities. It is called the “Drake Equation”. The formula is expressed as:

N = R* · fp  · ne · fl  · fi  · fc · L

The variables are defined as follows:

N = The number of civilizations in The Milky Way Galaxy whose electromagnetic emissions are detectable.

R* = The rate of formation of stars suitable for the development of intelligent life.

fp = The fraction of those stars with planetary systems.

ne = The number of planets, per solar system, with an environment suitable for life.

fl = The fraction of suitable planets on which life actually appears.

fi = The fraction of life bearing planets on which intelligent life emerges.

fc = The fraction of civilizations that develop a technology that releases detectable signs of their existence into space.

L = The length of time such civilizations release detectable signals into space.

But what does the formula mean to scientists? Well, that depends on who you talk to. Some scientists translate the results to be wildly optimistic that there is, indeed, intelligent life out there. Others feel quite the opposite. When Frank Drake met with Carl Sagan to speculate on the calculations, they estimated the existence of 1,000 (on the low end) to 100 million (on the high end) possible intelligent civilizations in our Milky Way galaxy. To counter their claims, scientists Frank Tipler and John D. Barrow put forth that the average number of intelligent life civilizations in our galaxy would be much less than one. Seeing as how human civilization exists, that would consequently, then, rule out the possibility of any other intelligent civilization existing at the same time.

The Search For Extraterrestrial Intelligence Institute (SETI) sees the Fermi’s paradox and accepts the reality that either interpretation of the possibility of the existence of intelligence life has a chance of being true. Thus, they continue their efforts, erring on the side of optimism. And the gringa likes that. Why not hold out hope? Why not be curious? And why not exercise such curiosity with a healthy dose of skepticism to balance out the equation and prevent a full-scale pre-disposition to crazy alien conspiracy theory by maintaining strict scientific standards?

SETI continues exploration and research as they search for others out there in the galaxy. They believe in the possibility that if a suitable environment was allowed enough time, that it is possible for intelligent life to develop. By using all sorts of science and technology (satellite arrays, chemistry, optical telescopes, and sophisticated radio signaling devices) SETI not only searches for signals from other civilizations but reaches out with messages of our own to anyone who may be listening. And with their Education and Public Outreach program (EPO), humans of all ages and walks of life can be a part of their endeavor. For educators there is nothing more exciting than to introduce to a classroom of elementary and middle school students SETI’s “Life in the Universe” curriculum. So log on and order your first package today and get students engaged with a lesson plan that is certain to pique their curiosity and hopefully inspire them to be the future of our world’s STEM programs, because we need them.

Sources:

www.seti.org

www.yahoo.news

wikipedia.org

Image Credit:  bing.net

 

 

Amazing Italy, From Art to Astronauts


My cosmic sister, Bea, hails from Italy and therefore has a special interest in the Italian Space Agency (ASI, Agenzia Spaziale Italiana). So, the gringa dedicates this post to Bea.

Since its inception in 1988, ASI has consistently made significant contributions to space technology development. ASI is part of the European Space Agency (ESA) and works closely with NASA as well. Italy has been, and will continue to be, a key player in the international space exploration community. Whether it is technology that gets a manned mission to Mars or technology that helps Earth observers intervene to prevent or respond to environmental disasters, the world can all extend a “brava” to Italy.

Italy has three active space centers. Ten kilometers east of Matera is ASI’s “Space Geodesy Center”, which opened for business in 1983. Earth observation and imaging is the primary mission of the programs at work at SGC. The “Luigi Broglio” Space Center, in operation since the 1960’s, is located on the coast of the Indian Ocean near Malindi, Kenya. It has an Earth segment base and an ocean segment base which launch and control satellites. The center that manages and analyzes all collected scientific data (ASDC) can be found at ASI headquarters in Rome. Not only is data analyzed here but mission monitoring is also conducted at this center.

The primary missions Italy’s has high involvement with are:

  • Created Multi-Purpose Logistic Modules (MPLM) Leonardo, Raffaello and Donatello for transporting scientific research necessities to the International Space Station (ISS)
  • Space Habitability – March 2001, Italy became the 3rd nation to launch an element integrated into the ISS, the logistics module “Leonardo”
  • Life Sciences – Biotechnology research to improve knowledge of: the aging process and effective countermeasures, immunology, technologies to enable the colonization of space by humans, therapeutic studies for improving the quality of life for all humanity
  • Bioregenerative Environmental Control Project (CAB) – to put it in plain English, gringa language, scientists learn how to recycle and repurpose just about everything into something useful such as: plant based life support system, water purification through transpiration, space greenhouses, etc.
  • Motor and Cardiorespiratory Control Disturbances Project (DCMC) is a program with the goal of improving the quality of life for people who suffer from neuromotor and cardiorespiratory disabilities.
  • Osteoporosis and Muscular Atrophy Project (OSMA) is of particular interest because of how conditions of reduced gravity cause these debilitations, that are typically linked with aging, to affect young, healthy, physically fit astronauts. The research goal is to understand how gravity controls the functions of bone and muscle.
  • Bed-Rest is a study that simulates the effects of zero gravity by having volunteers stay in bed for 7-120 days in a head-down position so that studies of the cardiovascular and renal systems can be conducted.
  • Earth observation and telecommunication with satellites: Miosat, PRISMA, ROSA, COSMO-SkyMed, PRIMI, and COPERNICUS
  • High Energy Astrophysics study is an Italian only programme that conducts research on the most violent space phenomena that occurs throughout the Universe. Satellites involved in this programmed: GLAST/Fermi, SIMBOL-X, SWIFT, PAMELA, INTEGRAL, AMS, AGILE
  • Cosmology and Fundamental Physics programme studies the evolution of the Universe. Satellites involved in the programme: BOOMERANG, GAIA, EUCLID, GALILEO GALILEI, HERSCHEL, LARES, Olimpo, Planck, Plato, Lisa Pathfinder

Lisa Pathfinder is the most recent success of Italy’s space agency that has made worldwide headline news. Lisa’s purpose is to detect gravitational waves in space. Italy designed the overall architecture of Lisa and is managing the project with the cooperation of Italy’s National Institute of Physics as well as ESA partners.

Lisa launched successfully last month and will lock into its final orbit around mid-February. This is phase one of the future construction of a space observatory that will continue studies of gravitational waves. Project completion is expected to be around the end of 2034. Italian scientists are beside themselves with pride that finally, after Einstein published his theory of general relativity over a century ago, the search for gravitational waves has, at last, begun, thanks, in huge part, to Italy.

And what else does the world have to look forward to from Italy? Of course, the gringa’s favorite space subject, GETTING TO MARS! Italy boasts leadership of both phases of ESA’s two phase EXOMars mission. In 2016 a probe will launch to orbit Mars and study methane and other gases as well as attempt to detect any presence of life. Later, in 2018, a rover will land on Mars and begin analysis of the soil. One more objective is to study any possible risks for future manned missions.

So, Italian suits, Italian shoes, Sophia Loren, Galileo, Michelangelo, and… astronauts, scientists, researchers, technology mavens. THAT IS AMAZING, ITALY!

Source & Photo Credit:  www.asi.it