Amazing Italy, From Art to Astronauts


My cosmic sister, Bea, hails from Italy and therefore has a special interest in the Italian Space Agency (ASI, Agenzia Spaziale Italiana). So, the gringa dedicates this post to Bea.

Since its inception in 1988, ASI has consistently made significant contributions to space technology development. ASI is part of the European Space Agency (ESA) and works closely with NASA as well. Italy has been, and will continue to be, a key player in the international space exploration community. Whether it is technology that gets a manned mission to Mars or technology that helps Earth observers intervene to prevent or respond to environmental disasters, the world can all extend a “brava” to Italy.

Italy has three active space centers. Ten kilometers east of Matera is ASI’s “Space Geodesy Center”, which opened for business in 1983. Earth observation and imaging is the primary mission of the programs at work at SGC. The “Luigi Broglio” Space Center, in operation since the 1960’s, is located on the coast of the Indian Ocean near Malindi, Kenya. It has an Earth segment base and an ocean segment base which launch and control satellites. The center that manages and analyzes all collected scientific data (ASDC) can be found at ASI headquarters in Rome. Not only is data analyzed here but mission monitoring is also conducted at this center.

The primary missions Italy’s has high involvement with are:

  • Created Multi-Purpose Logistic Modules (MPLM) Leonardo, Raffaello and Donatello for transporting scientific research necessities to the International Space Station (ISS)
  • Space Habitability – March 2001, Italy became the 3rd nation to launch an element integrated into the ISS, the logistics module “Leonardo”
  • Life Sciences – Biotechnology research to improve knowledge of: the aging process and effective countermeasures, immunology, technologies to enable the colonization of space by humans, therapeutic studies for improving the quality of life for all humanity
  • Bioregenerative Environmental Control Project (CAB) – to put it in plain English, gringa language, scientists learn how to recycle and repurpose just about everything into something useful such as: plant based life support system, water purification through transpiration, space greenhouses, etc.
  • Motor and Cardiorespiratory Control Disturbances Project (DCMC) is a program with the goal of improving the quality of life for people who suffer from neuromotor and cardiorespiratory disabilities.
  • Osteoporosis and Muscular Atrophy Project (OSMA) is of particular interest because of how conditions of reduced gravity cause these debilitations, that are typically linked with aging, to affect young, healthy, physically fit astronauts. The research goal is to understand how gravity controls the functions of bone and muscle.
  • Bed-Rest is a study that simulates the effects of zero gravity by having volunteers stay in bed for 7-120 days in a head-down position so that studies of the cardiovascular and renal systems can be conducted.
  • Earth observation and telecommunication with satellites: Miosat, PRISMA, ROSA, COSMO-SkyMed, PRIMI, and COPERNICUS
  • High Energy Astrophysics study is an Italian only programme that conducts research on the most violent space phenomena that occurs throughout the Universe. Satellites involved in this programmed: GLAST/Fermi, SIMBOL-X, SWIFT, PAMELA, INTEGRAL, AMS, AGILE
  • Cosmology and Fundamental Physics programme studies the evolution of the Universe. Satellites involved in the programme: BOOMERANG, GAIA, EUCLID, GALILEO GALILEI, HERSCHEL, LARES, Olimpo, Planck, Plato, Lisa Pathfinder

Lisa Pathfinder is the most recent success of Italy’s space agency that has made worldwide headline news. Lisa’s purpose is to detect gravitational waves in space. Italy designed the overall architecture of Lisa and is managing the project with the cooperation of Italy’s National Institute of Physics as well as ESA partners.

Lisa launched successfully last month and will lock into its final orbit around mid-February. This is phase one of the future construction of a space observatory that will continue studies of gravitational waves. Project completion is expected to be around the end of 2034. Italian scientists are beside themselves with pride that finally, after Einstein published his theory of general relativity over a century ago, the search for gravitational waves has, at last, begun, thanks, in huge part, to Italy.

And what else does the world have to look forward to from Italy? Of course, the gringa’s favorite space subject, GETTING TO MARS! Italy boasts leadership of both phases of ESA’s two phase EXOMars mission. In 2016 a probe will launch to orbit Mars and study methane and other gases as well as attempt to detect any presence of life. Later, in 2018, a rover will land on Mars and begin analysis of the soil. One more objective is to study any possible risks for future manned missions.

So, Italian suits, Italian shoes, Sophia Loren, Galileo, Michelangelo, and… astronauts, scientists, researchers, technology mavens. THAT IS AMAZING, ITALY!

Source & Photo Credit:  www.asi.it

 

Pass The Galaxy Greens, Please


Truly, the gringa enjoys a fresh salad of spinach, arugula, romaine lettuce, with some walnuts tossed in, crumbled feta on top, and any assortment of chunky raw vegetables like zucchini, red bell pepper, asparagus, and onion. As a space gringa could I get my salad fix satisfied? Well, that’s exactly what the NASA engineers and scientists based in Huntsville, Alabama’s Marshall Space Flight Center have been working on for decades.

These galactic gardeners have created a space agricultural system for the International Space Station (ISS). The astronauts on ISS have been testing this technology which will ultimately find its way to Mars where it will create the food of the future. The ISS system is called the Environmental Control and Life Support System (ECLSS). It features a water recovery system and an oxygen generation system, the two basic necessities not only for human life, but also for plant life.

In order to sustain a long duration mission such as a Mars mission, astronauts will need to be able to supplement the food supplies they transport with them. One experiment called “Lada Validating Vegetable Production Unit” (boy is that a mouthful!) involves using a small greenhouse type contraption that has automated water and light controls. Lada’s goals are: to determine if space greens are safely edible; will space microorganisms grow on the space greens and if so, how can this risk be minimized; how can space greens be safely sanitized after harvest; discover methods for optimal production.

The most recent space greens to be harvested are a Japanese lettuce variety called “Mizuna”. The shuttle Discovery made a salad delivery to Earth in April. Along with the salad delivery was a report on findings based on the cultivation of the lettuce by two different methods, the “old” method versus the “new improved” method. The funny thing is that a sensor malfunction that went undetected resulted in a higher yield of lettuce. A mistake produced more. So much for the painstaking methods of a science experiment!

What happened after the sensor went on the blink was that the “root” module (no pot of dirt!) received much more water than it was supposed to. When cultivation “on the ground” determined that it would be better to minimize water and salt accumulations on the roots, this was the plan up on ISS. They’ve discovered the “actual” growing of the plant compared to the “land based” simulation did not result in identical scenarios.

It seems by overwatering the roots nutrients moved faster throughout the plant which resulted in faster fertilization release. Considering the plants are moving water and nutrients in micro-gravity, it makes sense to the gringa that more water would then be better. Water is kind of like a “vehicle” which facilitates the transport of the nutrition.

The gringa asks, “What does all this mean? I know that this will help Martian colonists get their fiber, but how does this help the rest of mankind that gets left behind?” Well, as climate change progresses, agriculture will become more of a challenge. We simply cannot continue producing crops according to the same old tried and true methods. Climate controlled greenhouses will need to be advanced to the point of sustaining a world population on the produce and vegetables it produces. The data from these experiments is critical to develop the type of technology that will save the Earth’s population from hunger.

These agricultural experiments have been taking place cooperatively between the United States and Russia for twenty years. Together, the scientists of two nations who have had an often hostile, cold, cantankerous relationship have ignored politics to quietly work together to solve the world’s problems. The gringa really likes that, even more than the space lettuce.

Source & Photo Credit: http://www.nasa.gov