Oysters & Fortunetellers


Where the gringa lives in the gulf coast of Texas, oyster farming is big business. The gringa’s farming experience is limited to my father’s cattle ranch and my own egg farming. Is that how oyster farming works? Do you just leave the little guys alone most of the time to do what oysters do? Toss them a bit of feed, protect them from predators, stuff like that? Well, actually oyster farming has gone hi-tech. For young people who are interested in a beach bum lifestyle with the edge of technology, oyster farming or working with the technology related to the industry may be your thing if you love science as much as beach bumming.

Oysters don’t need their human overseers to bring them a bale of hay or toss out some nutrient enriched scratch. They are living filters that live on the bottom of a bay. Oyster farmers really don’t have that much to do, it would seem, unless it is harvest time. Sounds like the perfect beach bum job.

However, there is one thing that can happen that can interrupt an oyster farmer’s hiatus between harvests. If storm clouds gather, oyster farmers have to get out of their hammocks, put away the surfboard and forego the margaritas and head out for some serious relocating work in the estuaries.

You see, as bottom feeding filters, rain in this polluted day and age can be deadly for oysters. And even if contaminants in run off don’t kill the slimy, little buggers they could, in turn, kill a human if eaten. A local thunderstorm with a heavy downpour means one of two things:

  • Completely relocate their stock, or,
  • Quarantine the area and delay harvest until it is safe.

Now, even if an oyster farmer was willing to relocate their oysters, often weather conditions can change rapidly and unexpectedly in coastal regions.  Usually an oyster farmer simply doesn’t have enough time to respond. So, the oysters bide the storm and everyone hopes for the best. But considering how heavily polluted most of the soil is in populated areas around the world, it’s usually not good news when it’s all over.

The gringa doesn’t have the numbers for industry loss or farm closures in the Gulf of Mexico area I call home. However, I can tell you about what’s been going on in Tasmania. Since 2013 industry research has recorded a loss of over $4.3 million (Australian currency!) for Tasmanian oyster farmers due to contamination related farm closures, caused by pollutants in rainfall water runoff that entered estuaries.  This sounds awful, right? Well, take heart, dear readers. There is good news for Tasmanians as well as oyster farmers everywhere thanks to an agriculture technology start-up company, The Yield.

The Yield has designed a system of sensors that were tested in 14 Tasmanian oyster farm estuaries. This comprised about 80% of the entire oyster industry for the state. The technology measured:

  • Water depth
  • Salinity
  • Temperature
  • Barometric pressure

Oyster farmers use their smartphone, or other device, to access the handy little app that is updated every five minutes with new data about their squishy, little, hard-shelled babies. Access is also available to food safety regulators so everybody that matters is in the loop.

But the gringa wants to know if this has made oyster farming better. I mean, it’s always fun to have new gadgets but where business is concerned, is there a point to the expense? Here are the benefits of this new technology:

  • Reduces paperwork between farmers & food service regulators.
  • Food quality and safety has improved.
  • Accurate measurements has resulted in fewer farm closures.
  • Fewer farm closures has resulted in higher production, yields and profits.

Well, it looks like this technology is worth the investment for oyster farmers. It also looks like the investment of time and effort of scientists and meteorologists for more than a century was also a worthy investment. That is the backbone of the information that went into designing this system. If you have a habit or hobby of recording weather related “stuff”, who knows, one day what you may consider a hobby or pre-occupation could change the world! More than a hundred years worth of weather and tidal related data helped developers understand weather and tidal patterns, how they changed with the seasons, and how this would affect the performance of the technology to predict weather events. So, basically, Tasmania’s oyster farmers are more successful because of digital fortunetellers.

Sources:

www.techrepublic.com

www.theyield.com

oysterstasmania.org

Image Credit: oysterstasmania.org

 

 

Advertisements

The Secret Success of the Swiss


Although Silicone Valley in the United States gets worldwide accolades as the primary source for innovation, Switzerland may actually have left the gringa’s country in its dust.  In fact, it may have been running circles around every technologically advanced nation since 2008 and no one has been aware of it. The gringa supposes that Switzerland simply prefers a low profile and is loathe to toot its own horn.

To discover just how amazing Swiss minds are, you have to dig into the reports generated by Cornell University, the graduate school INSEAD that has campuses in France, Singapore & Abu Dhabi, as well as reports generated by the World Intellectual Property Organization (WIPO).  Their collaborative efforts can be seen in an annual report called the Global Innovation Index. There is more to making the list than simply coming up with cool gizmos and devices. To be a winner a country must also lead in areas of: business sophistication, creativity, commitment to knowledge and creativity, infrastructure, and research.  The latest top 10 winners:

  1. Switzerland
  2. Sweden
  3. United Kingdom
  4. United States
  5. Finland
  6. Singapore
  7. Ireland
  8. Denmark
  9. Netherlands
  10. Germany

But why does Switzerland keep winning? It seems that Switzerland consistently delivers with regard to patents, technological inventions and programs that recruit and develop new talent.

Patents:  The European Patent Office  recorded, on average, 873 patent applications for every one million Swiss inhabitants. The Netherlands and Sweden came in second and third. It seems that the current generation of Nords are incredibly creative.

Inventions:  What might some of these patents be for with regard to the latest developments in technology?  The Nords put their money where their reputation is, investing heavily in Swiss entrepreneurs and aspiring inventors who have made their country proud with products like: Mouse Scanner by CES; Doodle -digital scheduling platform serving 20 million people (for a culture linked with precision timekeeping this comes as no surprise to the gringa); CleanSpace One, a robot waste collector for use in ridding the galaxy of space junk developed by Swiss Space Center at Lausanne’s Federal Institute of Technology.

Recruitment & Development: Switzerland aggressively seed funds entrepreneurs. For example, a student at Swiss Federal Institute of Technology (ETH) in Zurich, Johannes Reck, became CEO of his own start-up while still living in the dorms of Switzerland’s premier technical school of higher learning. He launched GetYourGuide, an online service to help people plan holiday and destination activities. Soon after launch, rather than Reck pitching his idea to investors, a local bank actually approached him and made an offer for seed funding. Within four years Reck’s idea has brought in more than $10 million in revenue to a country that invested $2 million in a Swiss citizen with an idea.

Entrepreneur hopefuls or geeks who have dreams of hitting it big with the next trendy gizmo or gadget, you may want to set your eyes on immigrating to Switzerland. But don’t expect it to be a short, easy road to travel. To become a naturalized Swiss citizen you must:

  • Live in Switzerland for at least 12 years before applying for citizenship.
  • Any years spent living in Switzerland between the ages of 10-20 count as double.
  • In 2017 a new law may come into effect reducing the required number of years to 10.
  • Obey Swiss law and customs.
  • Pose no danger to national security.
  • Meet the additional citizenship requirements of your local municipality.
  • Submit citizenship application & schedule an interview.
  • Pass citizenship test that is either written or verbal.

In addition to the basic requirements, living in Switzerland is not cheap. However, one aspect to a high standard of living is the corresponding quality of life enjoyed. To maintain a competitive edge in a society of high achievers, being multi-lingual is almost a necessity. There are four languages commonly spoken within Switzerland and to succeed in business, entrepreneurs would do well to master all four: English, French, German, and Italian.

One great thing for up and coming innovators in Switzerland is that this tiny country boasts a marvelous business practice. The Swiss regard mentorship very highly. There are frequent events that pair entrepreneurs with mentors as well as investors. These are two key relationships that virtually guarantee success for a bright, ambitious young adult. So, young students and aspiring CEOs, rather than look westward toward the sunken landscape of Silicone Valley, the gringa says lift your eyes upwards toward the heights of the Swiss Alps. That is where success secretly abides.

Sources:

www.businessinsider.com

www.finfacts.ie

www.swissinfo.ch

thenextweb.com

Image Credit: lauralyndlt.files.wordpress.com

 

Breaker One-Nine, SOS, FRB’s & ETs


Dot dot dot-dash dash dash-dot dot dot. Dear readers, do you know what that is? It is SOS in Morse Code. All radio operators know this. It is an understood code that crosses all language barriers. The gringa, fascinated with all things space, then has to ask, does this include extra-terrestrials? Well, who knows?!

Now, the SETI Institute (Search for Extra-Terrestrial Intelligent Life) doesn’t really make it a practice to emit signals in their search for ETs, rather, they listen to outer space “noise”. NASA’s search for extra-terrestrial life isn’t so much for little green men to have a conversation with, but, rather, the origins of life such as amino acids, ribonucleotides (RNA) and certain gases such as oxygen, methane, ammonia, hydrogen, and, of course, water.

However, Earthlings have been inadvertently sending out all sorts of signals into space for over five decades. As technological devices fill the Earth, transmission signals fill the heavens: radio broadcasts, television signals, radar blips and bleeps, etc. So, why do we not purposely send a message designed to create a favorable first impression rather than let all this mish-mash represent humankind? Does NASA and SETI believe that no one exists, thus no one is listening or do they believe there may be inherent danger in seeking out contact? Evidently the reason is because there is no consensus, yet, within the scientific community. The professionals are ARGUING. Hmph.

Douglas Vakoch, a researcher with SETI, thinks that it may be time to have an international discussion on the subject and let the public’s opinion on the matter be heard. He is on the pro-sending signals side of the argument. He proposes transmitting radio signals to hundreds of stars within eighty-two light years of our home planet. This can be accomplished with the radio telescope at Arecibo Observatory in Puerto Rico.

Renowned physicist, Stephen Hawking, on the other hand, thinks this is a bad idea. By sending out so many signals to every Tom, Dick and Harry alien out there, we could communicate with the good, the bad and the ugly. He believes we should be much more cautious in our approach.

So, it seems that, although there is no consensus within the scientific community on whether or not we should initiate communication, there is a consensus that somewhere out there is intelligent life that would not only receive the signals, but would be capable of responding, perhaps in person. The gringa says, “Hmmm.”

Now, the telescope at Arecibo has already sent a space message back in 1974. Consisting of an intricate code, it was transmitted to a cluster of stars 25,000 light years away.

The Crimeans sent out four messages to the cosmos from 1999 until 2008. They were transmitted from the Yevpatoria RT-70 radio telescope at Crimea’s Center for Deep Space Communications. Their ET messages were entitled: “Cosmic Call”, “Teen Age Message”, “Cosmic Call 2”, and “A Message From Earth”. The messages were made up of binary code, repeating signals, musical compositions, photographs, whale songs, etc.

Scientists believed that it is important to purposely beam thoughtful messages into deep space rather than let ETs believe all Earthlings are like the Kardashians, or the Zodiac killer, or Archie Bunker. Although Earthlings have been flooding outer space with signals since the beginning of the television era, most of our daily technologies do not have signals that are sufficiently strong enough to be picked up by our nearest living ET neighbors’ light years away. Although, if they are advanced enough, they have probably detected something by now.

So, if SETI and the Crimeans have already sent out some transmissions, the gringa then wonders, “What’s the big deal about sending more?” And, if our own daily barrage of digital signals and radio waves have the possibility of already being detected, what’s the point of “laying low”? If an ET civilization is super advanced to the point they could easily dominate us, yet they haven’t shown up and taken over, why be so worried? It seems they could care less.

The gringa thinks the real reason why the scientists can’t stop arguing and just get to the business at hand is an age old reason. Power struggle. Tsk, tsk. How disappointing. The gringa believed that surely, of all human beings, scientists were above such nonsense. As scientists consider the possibility of the most ground-breaking and historical event EVER playing out, they eye one another suspiciously and wonder just who is going to get the credit. Yes. Exactly who gets to devise the message, approve it and send it as the representative of the entire Earth?!

So, although there are researchers who want to open up the subject to public debate, that also opens it up to the general host of problems that goes along with human nature. Venturing into the area of communicating with an alien race would mean the establishment of protocols. Who gets to decide who we Earthlings talk to and what we talk about?

Although SETI wants to actively transmit in hopes of communicating with extra-terrestrials, the official policy of the institute is that the final decision belongs to the people of Earth. Such a decision affects all humans. It could be the single-most life affecting decision for mankind. Therefore, it should be left in the hands of all the people and not just a few “experts”.

Many other leaders in the space exploration community are in agreement, such as former Senior Scientist for Astrobiology in NASA’s planetary protection office, John Rummel and SpaceX founder, Elon Musk. Pioneering American astronomer, Geoff Marcy, who has discovered many “extrasolar” planets, believes it is important that every culture, even deep jungle indigenous peoples, upon Earth have the opportunity to have their voices heard in such a decision that will affect every person worldwide.

The discussion on this issue will probably continue to heat up because, recently, some interesting radio signals have been detected by astronomers who have been left scratching their heads and wondering if they could, perhaps, be a signal from intelligent beings, seeing that, like one of our own repeated signal transmissions, this signal also repeated itself.

If a repeating signal has been detected in deep space, could it have other origins than intelligent beings purposely transmitting? Canadian scientist Paul Scholz finds the mystery rather exciting and believes this to be an important discovery and wants to know if the signals originated with living, breathing ETs or if a star just went “kaplooie” and it’s just a “coincidence” that it created a shockwave noise that mimics a man-made (or little green man-made) artificial, repeating signal.

Until the signals began repeating, scientists theorized the rapid bursts of radio signals resulted from a star that went supernova and exploded or, perhaps, a neutron star collapsing into a black hole. But, now that the signals are identical and repeating, the same scientists don’t quite know what to think.

In addition to a repeating pattern, there are other singular differences that set the signals apart from other space “noise”. When studied further, the signals are “brighter” and in a different “spot” on the “spectrum” of other fast radio burst signals (FRBs). These details are all well and good, but all the gringa wants to know is, “Are we alone or not?”

The closest I can get to a straight answer is what a Cornell University astronomy professor has to say. According to Professor James Cordes, whatever charge is powering the signal, it is powerful enough to repeat the signal cycle within minutes. The energy packed behind the transmission must be impressive because they are extraordinarily bright, thus enabling us to see them from very, very, very, very, far away. And, the power source must also be incredibly secure and amazingly strong and durable because it is not destroyed by the transmission of an exploding-star-scale blast and is capable of repeating the exploding-star-scale blast.

To put all of this in a nutshell, five fast radio burst signals were captured by the Parkes radio telescope in New South Wales, Australia. Rather than just be a single burst of energy, these are double bursts, two bursts separated by 2.4 milliseconds, consistently. They repeated five times. The origins of the signals could be as far away as several billion light years beyond the Milky Way Galaxy, our home turf in the cosmos.

The gringa has no answer and remains intrigued. And my vote is that we send our own signals.

 

 

Sources: http://www.ewao.com, http://www.seti.org, http://www.nasa.gov

Image Source:  www.dailymail.co.uk