How Climate Change Affects Vacation Priorities


So, when the climate change poop hits the fan, who is going to be in for the worst ride? What parts of the world should I vacation at now because they will be uninhabitable in the future? Exactly where will be the safest place for the gringa and the caveman to diddle away their golden years?

Well, we better get busy and visit all the beach hotspots that are alive and kicking right now. With sea levels rising, the coastal cabanas of today will be reef material tomorrow. And, considering that climate change creates erratic and extreme weather patterns such as: heavy rain here, drought there, devastating tornadoes everywhere; well, there is no uniform model of what’s going to change where or when. The only concrete expectation right now is what models predict about low elevation islands and coastal beachlands. They are pretty much going to be history, some maybe within my lifetime.

Other areas scientists expect to change dramatically are regions that have a delicate ecosystem balance and are already experiencing hyper-sensitivity to environmental stressors. These areas include:

  • Arctic, specifically the tundra region
  • Boreal forest belt – This is the conifer forest that stretches across North America, particularly dense in the Pacific Northwest
  • Tropical Rainforest
  • Alpine regions
  • Steppes of Asia and the Americas
  • Prairies of Asia and the Americas
  • Deciduous forests of South America and Australia

The Arctic is warming twice as fast as the rest of the Earth. The permafrost layer is melting. Glaciers are getting smaller and sea ice is disintegrating. The wildlife of the Arctic will probably be a loss to the world. They depend on a habitat that is going to grow too warm to support their needs. The indigenous people of this region will experience a loss of their culture that is strongly dependent on the wildlife and natural geography. The humans will have the adaptation advantage that the wildlife and fauna do not have. But the loss of their culture is still something to mourn over.

The boreal forests of North America are important carbon sponges for the earth. What will a degree or two warmer mean? As temperatures warm the center of the United States, the boreal forest will shift northward. Predictive models sees the United States losing its boreal forest as it relocates to Canada and Alaska. So, we won’t lose them, they will relocate. That’s good news in the aspect that at least the Earth will retain a critical carbon filter.

Researchers in tropical rainforests mark trees and track them for years, measuring them to see how they are responding to climate change. A group in the Bolivian Andes are studying a swath of diverse trees and plants that thrive in a limited temperature range. As temperatures rise, so do the trees. New, baby trees are growing uphill. Just as the North American model predicted a forest migration, the same is expected of the tropical rainforests. They will abandon the lowland jungle regions and migrate up the mountainsides, seeking cooler temperatures.

Alpine regions are going to experience the same forest creeping phenomena. As glaciers continue to recede, alpine plants will continue to move upwards looking for cooler temperatures and water. However, eventually, when all the glacier water has melted and run off or evaporated, this critical component of the annual water budget will be gone forever. Plants and trees dependent upon it will eventually be extinct. So Alpine ecosystems will not only migrate, they will migrate to a slow death.

The upside of forest migration is that the Earth is trying to compensate and save herself. The downside is that the migration process is slower than the warming process. This means there will still be catastrophic loss of tropical rainforest and alpine habitat. This will affect the wildlife dependent on these ecosystems as well as their indigenous people.

Experts predict the possibility of losing over half of the steppe habitats due to the effects of climate change. They are not modeling a migration of fauna, but a loss. Steppes are critical grazing areas. As the steppes experience habitat loss, growing smaller, overgrazing occurs on the remaining areas. The effects then are coupled: climate change related drought and overgrazing. Things look dire for the future of the steppes and the animals and shepherds and ranchers who depend on them. The steppes could become the Earth’s future Sahara’s.

Unlike a conifer boreal forest or tropical rainforest that are green year round, a deciduous forest becomes barren in the winter season as the trees lose their leaves. Deciduous forests exist in tropical and temperate climates. Climate change models predict warmer winters affecting deciduous forests. This could lead to tree loss from pests and disease. In regions where devastating drought occurs, there will be higher tree loss. When a tree dies in the forest it also becomes fuel. In regions experiencing drought related tree loss, the dry conditions and increased fuel of more dead trees makes conditions ripe for voracious wildfires. So, if the drought or the bugs don’t wipe out the deciduous forests, the wildfires probably will.

The gringa thinks the list of vacation priorities should go something like this:

  • Arctic expedition
  • Steppe pack-mule trip
  • Deciduous and Alpine forest camp outs
  • Beach parties around the world
  • Tropical rainforest excursion
  • Bigfoot safari in the boreal forests of the Pacific Northwest

I don’t think climate change is going to sound the death knell for planet Earth and mankind. The gringa does believe it will be the end of many species of animals and plants that are with us today. It is also highly likely that entire cultures will be wiped out when they lose the habitats they rely upon. And usually species loss does not mean a gaping hole is left behind. Usually, another species fills the gap or a species evolves and adapts. So, the key word to focus on is “change”. It’s climate “change” not climate “loss”. But the change is as significant as the past disappearances of entire civilizations such as the Maya or entire animal classes like the dinosaurs.

At this point, I believe the consensus among scientists is that we have passed the tipping point. There is no going back and “fixing” things. We simply have to ride the lightning and deal with it. So, if a person is able and so inclined, they need to enjoy the world as we know it today and document it for the children of the future.

 

Source:  www.nasa.gov

Image Credit: http://www.notenoughgood.com

 

Cosmic Spas & Outer Space Mineral Mines


Are NASA and other international space agencies interested in creating colonies on the Moon and various other exotic, cosmic locales? Most certainly. However, not for the nefarious purposes of whisking away the highly educated and financial elite in order to preserve the human race from extinction. What they really want to do is exploit the natural resources of these places.

Humans are a hungry species and their appetites include all sorts of stuff from fruits and vegetables to minerals and ores. Many minerals and ores are not only rare, with few deposits in sundry places around the world, but are also finite in their supply. Once diminished, humans will have to find another source. That’s where asteroids and the Moon come into play.

Asteroids are like one of those grab bags you get as a party favor. You never know what’s inside. Although primarily chunks of ice, tar and dust, they also contain scare minerals and metals. For astronaut mining crews, outer space is full of opportunity, kind of like a mechanic entering an auto junkyard the size of Earth. Best estimates to date believe there are hundreds of thousands of asteroids, some nearly five billion years old, of assorted sizes and shapes from the size of a coffee table to hundreds of miles in diameter (Earth, in comparison, is about 8,000 miles in diameter). With such abundance, if humans can overcome the technological and economical obstacles, we may have a seemingly limitless supply of raw materials available.

The gringa wonders what will happen when that occurs? Will space become filled with flag waving asteroids? Considering even a small asteroid could be valued at many millions of dollars in potential minerals, will countries be zipping about space, hither and yon, planting flags on as many asteroids as possible in a territory game of, “Mine! I found it first!”? The gringa is hoping it will be much more civilized than that.

For mining purposes, asteroid’s are classified according to three groups based on light reflection (spectral) analysis. Since mankind cannot yet land on an asteroid and physically take a geological sample or do so with a robotic satellite, scientists evaluate how light reflects off the surface of an asteroid to determine its primary mineral component.

C-type asteroids are dark and carbon based. They are comprised of clay based minerals that have lots of water trapped within the clay. The gringa thinks these could, perhaps become cosmic spas if we could find a way to generate some kind of thermal reaction within the asteroid. Think of it, “Come visit asteroid XP-247 for its relaxing steam baths and mineralized clay body and facial wraps. Just don’t forget your oxygen mask.”

But what about the carbon and other stuff in the clay? Is that any good for anything? Yep. It makes a garden grow lush, thick and plentiful. C-type asteroids rich in carbon, phosphorous and other elements in the fertilizer spectrum could be very valuable as future garden spots. The gringa can now see the cosmic version of the “Hanging Gardens of Babylon” where visitors can also get a soak in the hot springs and a beautifying and detoxifying mineral rich clay body wrap.

I mean, really, we have plenty of clay and carbon and water here on Earth but surely there will be an eager entrepreneur who will see the same potential. Or do we really have plenty of clay, minerals and water on Earth?

The water reserves could very well come in handy. The gringa can see it now – a gravity beam lassos a water rich C-type asteroid and hauls it near Earth’s atmosphere. It then uses transporter technology that has finally been perfected to zap it through the atmosphere, avoiding a friction filled entry that would evaporate up all that precious water. Then, as it approaches fatefully close to a desert region, just before impact a precision laser beam goes, “ZIP, ZAP, ZOOM!” and a lovely shower of water rains down upon the desert with all the pulverized clay and carbon providing rich fertilizer. The desert is soon a fertile oasis. Hey, it could happen. Stranger things already have.

But NASA thinks the real value of water rich asteroids is in using the resource in outer space. By finding a way to mine the water in flight, crews could save billions of dollars by not having to pack this life-support necessity. Interestingly enough, the very thing that humans need to survive, consisting of two molecules of hydrogen and one of oxygen, are the very elements of rocket fuel. (Wow, humans are 60% rocket fuel, or, water, depending on your perspective!). So, astronauts dock their spaceship at a galactic version of Exxon to fill up the tank and top off the water reserves. And while the service station is checking the engine’s oil level and cabin’s air pressure, the crew is freshening up at the nearby spa. Interesting.

So, C-type asteroids can either be Desert-to-Eden conversion sources, hot spring spas, water wells, or rocket fuel depots. Or all three at the same time.Take your pick.

S-type asteroids shine a little brighter than dark, carbon based C-types. That’s because they are rich in reflective metals like cobalt, iron and nickel. If a mining crew is really lucky they could find one with deposits of rhodium, platinum or gold. Scientists estimate that an asteroid about the size of an average bedroom could be packed with well over one million pounds of metals, a tiny fraction being the exceedingly valuable rare ones. Even if mining crews could extract just one hundred pounds of platinum, at about $1000 an ounce, a $100,000 load of platinum would just be the gravy on top of the wealth accumulated from the remaining predominant minerals.

But it may be the M-class asteroids that wars end up being fought over. The wars for oil that we have raging now could very well become wars for M-class asteroids in the future. These asteroids are expected to contain at least ten times the mineral content of S-types.

To make space mining a reality, the mission has to be profitable. With current missions costing in the hundreds of millions, some even billions, an asteroid would have to be massively rich in raw materials. The other option is to develop technologies that are more economical.

Before any of that even matters, current asteroid knowledge needs to be vastly broadened and fine-tuned. We need cosmic cartographers to accurately map the hundreds of thousands of asteroids in outer space. The world needs space geologists that have the technology and knowledge to analyze what minerals each asteroid actually contains. Young students now, who have an interest in a cosmic career, could really have a geology or cartography degree pay off by landing them their dream job.

NASA’s first effort to test their scientific mettle for determining present mineral resources within an asteroid lie with their OSIRIS-REx mission. The goal of “Origins, Spectral Interpretation, Resource Identification, Security and Regolith Explorer” is to return with a geological sample from asteroid Bennu. It is set to launch in September and arrive at the asteroid almost two years later. If all goes according to plan, Earthlings can expect an authentic piece of Bennu to arrive on planet Earth around 2020. (Of course, the gringa is reminded of her favorite piece of motherly advice given regularly to her children in efforts to cultivate a more relaxed approach to life, “The plan is that nothing goes according to plan.”)

In addition to geological studies of Bennu’s raw materials, asteroid re-direction technologies will also be studied. The spacecraft is scheduled to perform an interesting experiment. It is going to give Bennu a gentle, solar nudge. Scientists want to know if sunlight can be used to affect the path of travel of asteroids. I guess the reasoning is that asteroids are too valuable to simply blast into oblivion if Earth happens to be in the way. They would rather nudge them aside then attempt to exploit the wealth they contain.

The most important goals of the mission, however, are to further the development of space mining technologies. They plan to scrape together a two ounce and 4.4 pound geological sample. The spacecraft will then use its state-of-the-art instruments to map the surface of Bennu and analyze its composition. These are the on-board technologies and their purposes:

  • OVIRS (OSIRIS-REx Visible and Infrared Spectrometer) – analyzes visible and near-infrared light to detect minerals, compounds and chemicals within the asteroid.
  • OTES (OSIRIS-REx Thermal Emission Spectrometer) – analyzes infrared light to detect surface minerals of Bennu, determine surface temperature and map the location of water-rich clay mineral deposits.
  • REx (Regolith X-ray Imaging Spectrometer) – analyzes X-ray aura of Bennu’s surface in sunlight to calculate amounts and locations of elements like: iron, magnesium, silicon and sulfur.

To find out if sunlight can be used as an asteroid diversion technique OVIRS and OTES will combine their abilities to study what is known as the “Yarkovsky effect”. When an asteroid absorbs sunlight much of the heat radiates outward and provides a propelling effect. Observations will be made to see if a “man-made” solar heat saturation could result in changing an asteroid’s trajectory.

Most of what will be recorded by the different spectrometers will only reflect what is on Bennu’s surface and within a shallow depth (about half a millimeter). They are not capable of reaching deep within the asteroid’s core. To get a deeper look the spacecraft has a tool that blows nitrogen gas onto the surface that will force minerals up from a depth of about two inches. Even so, it’s pretty obvious that much about Bennu will remain unknown even if the mission is successful in achieving all of its goals.

But, a successful mission will at least tell the world one thing: can mining asteroid’s work? The gringa believes if great wealth is at stake there will be movers and shakers in this world who will make it work one way or another while pocketing a healthy profit in the process.

Source & Image Credit:  www.nasa.gov

 

 

 

 

 

Rub A Dub, Dub, Nelson Needs A Tub


It’s pretty common for researchers and common man to first think about the coastal dwellers who will be displaced by rising ocean levels due to climate change. Thoughts also quickly turn to coastal species of plants and animals that may fare even worse, having nowhere to turn, and thus possibly becoming extinct.

One thing that is rarely considered are national treasures that sit seaside or within a harbor. What will happen to the likes of the Statue of Liberty or Nelson’s Column? What of the Doe and Stag columns that welcome sailors into safe harbor at the island of Rhodes? How many wonderful works of art will possibly be swallowed up by the seas and lost to landlubbers because of climate change?

the-statue-of-liberty-stands-high-and-mighty-in-new-york-harbors-liberty-island-the-305-foot-statue-from-ground-level-to-flame-tip-was-created-in-france-with-giant-steel-supports-before-being-assembled-in-america

Statue of Liberty, USA, image source:  www.pamojasisi.blogspot.com

th (2)

The Doe and Stag, Rhodes, image source: http://www.superstock.co.uk

348s

Unconditional Surrender, San Diego, CA, USA, image source:  www.yelp.com

11234155823_2429646b17_z

Annie Moore (first registered Ellis Island immigrant), Cobh, County Cork, Ireland, image source:  www.friendlysonsofpatrick.org

The.Little.Mermaid.original.2558

The Little Mermaid, Copenhagen, Denmark, image source: http://www.thousandwonders.net

And these are only a few that the gringa was able to search for and find. There are very few land-locked nations. Every country with a coastline has something to lose. We all have some artistic skin in the game. Beautiful, historic works of art are destined for watery graves, sooner or later, because of climate change. There may be a few heads bobbing above the waves but most of them will be forgotten by future generations except for adventurous scuba divers on photo safari.

Experts indicate that fossil fuel pollution accelerated climate change will continue to affect our planet even if we switched tomorrow to alternatives. We have passed the tipping point. It’s possible we have caused enough damage to affect significant change for the next 100,000 years. Over that period of time, as global temperatures continue to rise, sea levels will, too. Possibly as much as fifty meters (150 feet).

That means that timeless works of art that look out upon the seas and oceans of this world will definitely be inundated to oblivion. But to understand the true scope of the course our lifestyles have plotted for our planet, consider Nelson’s Column which is located well inland, at Trafalgar Square in London. Models of climate change predict that by the time this cycle has run its course, only half of the column will be visible above the water line.

nelsons-column

Nelson’s Column, Trafalgar Square, London, UK, image source: http://www.scottish-country-dancing-dictionary.com

Before these dramatic events reach their fulfillment, mankind will have undergone dramatic migrational upheavals. As much as one fifth of the world’s population is expected to be affected. Rough estimates put current world population at about seven billion. That means that about one billion and four hundred million (1,400,000,000) people are going to have to move.

Dear readers, consider the strain Europe is undergoing right now with a Syrian refugee migration.  The United Nations reports that over nine million Syrians have fled their homes since the civil war began years ago. Estimates put the numbers spilling into Europe at about one million, but those numbers are questionable. Imagine if the refugee numbers Europe had absorbed had been one thousand fold. That’s the kind of numbers scientists are talking about where climate change migration is concerned.

There is no technology available to build any seawall adequate to protect the populations of coastal cities. They will have to relocate. Eventually. Period. There is no going back. The best we can hope for is that if we start tomorrow with zero carbon emissions we might be able to spare future generations from a worst case scenario (as if).

And, since that’s not going to happen, the gringa says invest in some scuba gear, sturdy suitcases, and quality maps of inland locales if you are a coastal dweller. If you live on secure high ground, perhaps you should build a guest house or two, or three, or maybe even forty. It may be the humble beginnings of a future hotel and housing empire for your great-great-great-great-great-great-great-grandchildren.

 

Source:  www.uk.news.yahoo.com

 

Image Source: www.news.yahoo.com

The Arctic & The Big Toot


Much of the talk about climate change centers around the word “carbon”. However, “methane” is a much more sinister contributor to climate change. Per molecule, methane, that stinky “fart” gas, is twenty-five times more potent than carbon dioxide over the course of a century. One region where methane’s contribution to climate change is studied by NASA is the Arctic. “The Arctic?!” the gringa exclaims. Yes, I know, dear reader. You must be thinking the same thing. What the heck is in the Arctic to contribute to atmospheric pollution? I mean, what does it have, a population of a hundred or so? How could a population so small create a problem so big?

Well, methane does not necessarily need a human created industrial complex to exist. In the Arctic, methane is created from decomposing microbes within the soil. While the Arctic tundra remains sealed by permafrost, the methane gas remains trapped within. As soon as Spring rolls around and this frozen layer of soil begins to thaw, the gas is released. This is a natural cycle. This was the thinking of the scientific community.

Based on models that depict this stable, natural cycle’s past methane gas release volumes, it has been determined that current methane levels that are escaping into the atmosphere are much higher than model estimates expected. Surprise, surprise! The research team conducting these studies have used specialized precision instruments to measure Arctic methane gas emissions during the summer months. They ignored gathering data during the brutal winter months on the assumption that because the ground was frozen solid, the methane would be sealed within the permafrost.

They are now discovering they have been terribly wrong.  From September until May, the Arctic winter, the wet, lowland tundra as well as the drier, upland tundra are very actively emitting methane gas. In fact, the Arctic winter emits just as much methane as the Arctic summer. Methane seepage is just much slower during the frozen conditions upon the tundra during the winter season. However, since the winter season is about eighty percent longer in duration than the short summer season, there is plenty of time for slow winter methane seepage to catch up to the amount of emissions that are released quickly during the warmer Summer months.

During winter, even though the temperature of the soil is below the freezing point (32 degrees Fahrenheit/0 degrees Celsius), water that is trapped within the soil does not necessarily freeze completely. The active layer of Arctic soil, the top layer that thaws in summer and freezes in winter, experiences what scientists call a “sandwich effect” when it re-freezes. As the active layer begins to refreeze, there is a mid-section that is insulated by a frozen top and frozen bottom. This mid-section of the top, active layer does not completely freeze. Within this unfrozen strip of soil microorganisms do what microorganisms do, they break down organic matter which creates methane emissions. And this goes on all winter long in the Arctic.

The drier, upland Arctic tundra has also surprised scientists. Prior to these studies researchers believed that this area would produce less methane gas. However, what they have discovered is that the grasses and plants act like little chimneys, spewing higher volumes of methane into the atmosphere.

Although this may sound like bad news, the gringa says, “There, there. Do not dismay. Even if it seems like bad news at least it’s NEWS! Now we KNOW and now we can ACT.” And that is just what NASA plans to do. Now that they have this very important data, they can rearrange their climate models which are used to create predictions to calculate future methane budgets. And, if the dear reader is anything like the gringa, you know very well that any budget has to be adjusted, sometimes quite often, especially when new expenses are realized.

Since methane is a critical component to the warming of Earth’s atmosphere, it is vitally important to have correct data. Now NASA can develop better solutions to continue to improve life here on Earth and to safeguard the future of Earthlings. And the gringa is glad that they are on the job.

Source: http://www.nasa.gov

Photo credit:  http://biomesgroup2.wikispaces.com/Tundra

 

 

Warming Lakes & Rivers = Trouble


It’s pretty easy to find climate change articles discussing the changes that are taking place in the world’s oceans. But, the gringa asks, what about the lakes and rivers of the Earth?

I grew up on a river. I love rivers. I love canoeing and floating down rivers on tubes and camping out alongside the banks of a river. What’s happening with these rivers I love? And what about lakes? Every summer we take a traditional three day weekend family trip to one of the most beautiful lakes in Texas. What’s happening to this fabulous lake? Unfortunately, the research shows that these are all changing as well.

NASA’s response to this change is to create a “global water cycle budget”. It covers a ten year period of the Earth’s freshwater concerns. This will be the baseline by which future “global water cycle budget’s” will be compared.

The water cycle involves the entire environmental process of how water moves, in all forms, around this big, blue planet. As depicted in the image posted it is easy to trace how water evaporates from the surface of the Earth. As it rises into the atmosphere it cools, condenses into clouds, then returns to the Earth as precipitation (rain, snow, hail,  or sleet). This is the kind of science the gringa learned in elementary school but it is, perhaps, the most critical environmental cycle for the continuation of life on Earth.

From the year 2000 until 2010 NASA collected satellite data  to estimate how much energy from the sun was required to move water. Hotter days means more evaporation of water within the soil. More evaporation means more moisture in the winds that transport this moisture throughout the world. Because the Earth is a closed system, any water that evaporates from its surface can be accounted for in the water vapor that eventually accumulates in the atmosphere. It’s kind of like taking a jar of pennies to the bank and getting dollars in return. It’s an even exchange of the same thing, money, but it exists in two different forms, pennies or bills. Water on Earth is the same. It’s either here on Earth as water or in the atmosphere as a form of precipitation.

However, the water model is a bit more complicated. Consider that each penny represents a different data set concerning where the water is specifically located, formed, or used. Such as: ocean, lake, evaporation from soil and plants, streams, rivers, human consumption. To help scientists manage all of this data they divide the Earth into seven land masses (Eurasia, South America, North America, Africa, Antarctica, Mainland Australia, Oceania/New Zealand/Tasmania) and nine ocean basins (North Pacific, South Pacific, Indian, North Atlantic, South Atlantic, Caribbean, Mediterranean, Arctic, Black Sea).

Over two dozen satellites provide scientists with data concerning precipitation and evaporation over the land masses and oceans. Researchers can track the movement of atmospheric water vapor, river runoff, groundwater reservoirs, soil moisture and snowpacks.

These important studies have already determined that lakes around the world are warming. This warming trend is affecting the ecosystems they are a part of as well as threatening the security of adequate freshwater supplies.

To come to the conclusion that lakes are warming, NASA used a twenty-five year compilation of data of ground measurements of over 200 lakes on six separate continents. On average, the lakes are warming about half a degree Fahrenheit every decade. Some lakes, the ones at higher latitudes, are warming even faster, one whole degree Fahrenheit per decade. That means that freshwater lakes are warming faster than the oceans.

As lakes warm, algal blooms increase. These rob the oxygen in the water from the fish. NASA’s models predict a twenty percent increase in these toxic algal blooms over the next century. Not only will this result in a chain reaction within the ecosystem wiping out the fish, as well as the wildlife and fauna that depend on those fish, but the blooms will also increase greenhouse gas emissions. Algal blooms are expected to produce methane emissions that will increase four percent over the next decade unless we Earthlings come up with a solution.

Solving the lake warming problem is a very important component of solving the climate change problem because methane emissions are 25 times more powerful than carbon emissions. A massive worldwide increase of algal blooms in freshwater lakes is a disaster we cannot allow to happen.

If the world’s lakes become a casualty of climate change, it won’t just be an environmental disaster, it will be a humanitarian disaster. These are important sources for drinking water, crop irrigation, and the production of food fish that are an important protein source for vulnerable populations around the world. Some researchers are already detecting evidence that productivity in warming lakes is already declining.

Out of the 37 largest aquifers on Earth, 21 are already past the sustainability tipping point and are being depleted. Another 13 are classified as “significantly distressed”. Eight are classified as “overstressed”. “Distressed” and “overstressed” means that these water sources have no natural replenishment to offset consumption. Five more were classified as “extremely stressed”, being depleted but with some replenishment occurring.

These were the conclusions of NASA’s study of ten years of data from the GRACE satellites. The GRACE satellites measure how Earth’s gravity is affected by existing masses of water. What NASA reports is alarming and difficult for the gringa to swallow, even with a glassful of water. That means that almost one third of our world’s groundwater is rapidly disappearing. And what’s even scarier is there is no reliable data that can predict just exactly when these wells will run dry. Yet, we continue to consume rather than conserve.

One of these overstressed reservoirs is the Arabian Aquifer System. It sustains over 60 million people. If we think there’s trouble in the Middle East right now over regional power struggles and the global fight to dominate the oilfields for profit, what the heck can we expect to see when these people have nothing left to drink? What kind of mass exodus will occur when that happens? This is a problem that must be solved. When climate change deniers scoff at the idea that climate change is the single most issue that threatens the national security of all peoples, they have no idea what they are talking about.

If Americans thought the California and Texas droughts were painful, consider what could occur in India and Pakistan, home to the second-most overstressed aquifer, the Indus Basin. Then there’s the third most overstressed water source, the Murzuk-Djado basin in north Africa. These regions are home to almost two billion people! Think about the Syrian refugee crisis. We ain’t seen nothin’ yet.

While working toward a solution, scientists cannot agree on any projected timeline of “time to depletion”. And when the gringa says they cannot agree, I’m talking about discrepancies of warnings of ten years to twenty-one THOUSAND years! However, one thing that these scientists DO agree on is that in a water-scarce society that is water dependent, this kind of ignorance is intolerable. Well, the gringa is glad to hear that.

Because groundwater reservoirs are so deep beneath the surface of the Earth, the only method to accurately measure just how much is down there is to drill, baby, drill. It’s gonna cost a lot of money, but the experts say it has to be done. NASA is committed to using its technology, personnel and data to help secure mankind’s future and improve lives around the world. By sharing knowledge freely with scientists around the world, the agency hopes to increase understanding that will lead to solutions.

The gringa waits to hear NASA’s announcement of a challenge like “Dig A Hole, Save The Planet”. The gringa has every confidence that NASA will continue to lead the charge to save us Earthlings from ourselves and the messes we continue to make. These challenges are simply a way for us to redeem ourselves after making such awful messes.

Source & Photo Credit: www.nasa.gov

 

The Breath of the Earth


The cover photo for this post depicts a NASA supercomputer generated model that simulates what carbon dioxide looks like in Earth’s atmosphere if climate change creates a situation where the land and ocean are no longer capable of absorbing fifty percent of the CO2 emissions that are currently produced. Things are going to start getting hot really fast.

The aim of the UN climate summit in Paris is to set future limits on human-produced carbon emissions. The research of NASA will play a critical role in briefing all nations who attend. The gringa is willing to put her trust in NASA. In my opinion it is an agency that is a-political and non-nationalistic. It has one goal: scientific truth. It does not care about a scientist’s nationality, religion or political persuasion. NASA only cares about discovering the truth and using it for the benefit of all mankind.

Whereas there are many political motivations to embrace or reject the science of climate change, the gringa will put her trust in NASA. Whereas there are many financial gain motivations that cause people to embrace or reject suggested technologies to help curb climate change, the gringa will put her trust in what NASA advises. So, what is it that they have to say?

First, NASA will present how the Earth is reacting to the rise of gases in the atmosphere that trap heat. These are the gases causing climate change. NASA’s OCO-2 mission (Orbiting Carbon Observatory-2) is a satellite designed for the purpose of measuring atmospheric carbon dioxide.

Presently, as mankind burns fossil fuels around the world, the land and oceans absorb about half of the carbon dioxide emissions such action generates. But remember, the earth itself produces its own natural levels of CO2. Mankind is heaping its own contribution atop that. A full year of data collected by OCO-2 has been analyzed by NASA experts. The key question is whether or not the oceans, forests and ecosystems can sustain the current fifty percent absorption level of CO2.

Mankind is contributing to an atmospheric level of carbon dioxide that has reached a concentration point (400 parts per million) that is higher than it has ever been in over 400,000 years. This level continues to rise about 2 parts per million per year. In the years since the industrial revolution, the earth has experienced a 250% increase of carbon based emissions. It only took mankind about two hundred years to do that.

So, if nothing changes, it is a certainty that carbon emissions will increase. As the ecosystems continue their work as the lungs of the earth, will they be able to sustain their current efficiency? As warming of the earth continues, these ecosystems are affected and changed. Will these changes result in lowering the efficiency of the earth to breathe or increase its efficiency, causing the earth to gasp, or will it simply evolve to compensate and its ability to filter out these toxins from the atmosphere remain the same? Those are the only logical conclusions of our current environmental predicament. It has to be one of those three.

The deputy project scientist of the OCO-2 mission, Annmarie Eldering of NASA’s Jet Propulsion Laboratory, has stated that “… carbon dioxide is the largest human-produced driver of our changing climate…” That is actually good news. If dangerous levels of carbon emissions are not a natural condition but, rather, an artificially created condition by mankind, mankind can then make changes and lower these dangerous carbon emission levels. If we will only do it.

Life as we know it definitely has to change. Change is always uncomfortable and sometimes downright painful. The largest contributors of carbon emissions are populations that are enjoying the benefits of the technologies that are creating the problems. Can spoiled, grown up children really be expected to give up some of their toys or, at the least, limit the amount of time they play with them?

Mankind not only has to consider its physical contribution of pollutants that end up directly in the atmosphere, but also the things that we do that harms the lungs of the earth. Can mankind really afford to upset the balance of the world’s oceans and ancient forests? If we don’t change our ways it’s essentially no different than a human continuing to smoke two packs a day even though their doctor has told them they have lung cancer.

As conditions created by mankind causes atmospheric temperatures to rise, the oceans warm. Phytoplankton is the first link in the ocean’s ecosystem chain. And now that link is showing evidence of change in reaction to warmer oceanic temperatures. Mike Behrenfeld, the principal investigator for NASA’s mission of studying the largest natural phytoplankton bloom, said: “Phytoplankton are not only influenced by climate, but they also influence climate.” Everything on earth is interconnected, co-dependent, if the phytoplankton goes, we all go.

So, as the climate warms and changes the ecosystem, what about carbon emissions? Will the changes result in a rise or fall in atmospheric levels? Will the delicate balance remain the same? According to NASA’s decade long investigation “Arctic Boreal Vulnerability Experiment” scientists have determined that as warmer temperatures result in Arctic permafrost thaw and increase forest fires, atmospheric carbon levels will increase. The chain reaction will be that the natural features of earth that act as the lungs that breathe for our world, will slowly deteriorate and be destroyed. The breath of the earth will slowly disappear as lung capacity diminishes.

In fact, NASA researchers have established a definitive link between forest wildfires in the Amazon with powerful hurricanes in the North Atlantic. One natural disaster feeds another. Warm ocean water is the fuel needed for devastating hurricanes. Warmer ocean temperatures are created when the lungs of the world, ancient forests, are decimated. So, deforestation raises carbon levels which warms the ocean which feeds a massive hurricane which reduces atmospheric moisture which creates dry conditions which contributes to decimating forest fires which leads to…. Are you following the gringa’s logic here?

University of California Earth System Scientist James Randerson concluded, “Keeping fire out of the Amazon basin is critical from a carbon cycle perspective.” And yet the forests burn. The most irresponsible deforesters are big business, often the mining industry or petroleum companies. The indigenous people understand their inter-dependence on the forest. They tend to respect what feeds and houses them. Big business, however, is only there temporarily to exploit the natural resources. Hence, the irresponsibility.

So, the predicted increase of a two parts per million annual increase of carbon dioxide could end up being much, much more. The earth could see a chain reaction event, a snowball effect, a runaway train rise of greenhouse gases that gets way beyond mankind’s ability to affect any manner of control or reversal of effects. That is the tipping point, the point of no return. That does not mean Armageddon and the destruction of all mankind. It does mean life as we know it will be over.

A runaway train event of global climate change would mean areas that once were agricultural breadbaskets could become deserts. Areas that are richly inhabited coastal areas could become reefs. Areas that were ancient forested Amazonian jungle could become barren and unable to sustain the indigenous populations that lived off the land.

A runaway train event of global climate change will mean mass migrations of humanity to areas that are capable of providing crops and freshwater. Cartography will become big business as coastlines change and borders move. In fact, borders could very well become a thing of the past as a global population undergoes a migrational shift such as has never been seen before.

NASA’s plans for the future:

  • A 2016 atmospheric carbon emission study over the skies of the United States
  • Coral Airborne Laboratory mission in 2016 to study the world’s coral reefs and changing pH levels of the oceans as they absorb increasing levels of carbon emissions
  • Pre-Aerosol, Clouds and Ocean Ecosystem satellite deployment to measure phytoplankton from orbit
  • Integration into the International Space Station of the Global Ecosystem Dynamics Investigation and ECOsystem Spaceborne Thermal Radiometer Experiment which will observe plants and forests

NASA’s contribution to solving our world’s environmental issues is critical. However, just as you can lead a horse to water but you can’t make him drink, NASA can educate the world on the facts and that’s it. Mankind must make the determination to act upon those facts. And the gringa thinks that sooner is better than later.

Source & Photo Credit: http://www.nasa.gov

 

 

 

 

And The Winning Asteroid Is…


NASA’s Asteroid Redirect Mission (ARM) scheduled in the mid -2020s has yet to determine which asteroid they plan to go out and corral into the orbit of our moon. The work is still ongoing to determine the winning asteroid candidate. So far, NASA has narrowed the selection down to the following three candidates: Itokawa, Bennu and 2008 EV5. It is possible, however, other asteroids could be added to this short list and these current favorites could be eliminated. The gringa feels like it’s a bad scene from a science fiction Bachelor episode.

Since NASA announced its asteroid initiative to the public three years ago, science experts as well as science enthusiasts from all over the world have collaborated in identifying these Big Bang rock leftovers throughout the cosmos.  These efforts have been so successful, detection of near-Earth asteroids (NEOs) has increased by sixty-five percent.

On December 29, 2010,  the Japanese Aerospace Exploration Agency’s (JAEA) spacecraft “Hayabusa” returned to Earth with samples from an asteroid they named “Itokawa”. The Japanese led international crew of scientists brought back a chunk of an alien world.  Hayabusa traveled one billion kilometers  for over two years to execute what must be the world’s longest pick-up and delivery service ever. The gringa would not want to pick up the tab for that tip! Five bucks for the pizza guy is my absolute limit! This successful joint mission of multiple nations led by the Japanese was successful in bringing scientists dust particles from another world, the third such achievement the world has ever seen.

Images of Itokawa were taken when the asteroid crossed near Earth in 2005. It’s surface is unique to any others that have been observed because it seems to have no craters. The scientists are really scratching their heads over this little mystery. One hypothesis thinks it’s possible that craters simply cannot form on Itokawa because rather than being a solid rock asteroid, it actually is a junk pile of multiple space rocks and ice chunks held together by gravity. If it gets struck by a meteor, it would just jiggle around. The gringa’s not so sure she holds with this theory, but, hey, I’m not scientist. Who am I to criticize. The asteroid holds other novelties as well. One part of its interior is denser than the other. For the gringa, that sounds like people. The experts will continue their studies and, maybe one day, the world will know the answer to why Itokawa has a hard spot and no pock marks. It almost sounds like a disease.

Another asteroid favorite is Bennu. This little fella seems to have led a hard life. Researchers believe old Bennu (billions of years old) was dismembered by the gravity of multiple planets. Now THAT’S what the gringa calls living in a rough neighborhood. NASA’s Goddard Space Flight Center in Greenbelt, Maryland has produced an animated video to introduce Bennu. It can be viewed here, on NASA’s website, or on YouTube.

In late 2016 a mission to Bennu is planned to launch. It should take about seven years for samples to be retrieved and then returned to Earth. Scientists suspect that Bennu is made up of chondrules. These are grains of mineral (in other words, space sand) that are held together by gravity and stationary electrical charges to form a solid rock. Scientist want to test their theory by getting their hands on some samples.

Bennu is important because it is like a time capsule which has preserved itself since the Big Bang that gave birth to it. It has not experienced geologic and chemical changes like our Earth. Bennu could possibly be a pristine example of the most primitive material in the entire solar system. This could help the scientific community understand how life began if organic material is present on Bennu that could have the building blocks of terrestrial life, such as carbon and hydrogen.

Bennu is not as dense as a regular Earth rock so it could possibly be hollow. It could be just another pile of rubble like Itokawa. It is also very dark, like asphalt. Because of this, it absorbs lots of sunlight which then creates a radiating effect which causes a reaction a bit like propulsion which affects its orbit. This is known as the Yarkovsky effect. So, basically, Bennu just kind of wanders the galaxy willy-nilly and why it has sometimes had close encounters with Saturn, Venus and Earth. The theory of being a rubble pile then explains why it seems to change shape because, when having a close call with a large planet, the gravitational effect would pull it apart and reshape it.

Now, NASA may call a Bennu encounter a “close call”, but the gringa’s not too worried. There is only a 1 in 2,500 chance that it could impact the Earth in our lifetime. We’ve got plenty of time to develop a planetary defense system that can give Bennu a little poke in the eye if he gets too close and send him on his way again.

The third contender for the asteroid lasso rodeo is asteroid 2008 EV5. Not a very romantic name. The gringa thinks the experts could have come up with something a bit more catchy. March 4, 2008 (big surprise there), the Mount Lemmon Survey in Tucson, Arizona discovered 2008 EV5. This asteroid has an interesting prominent ridge that parallels the rock’s equator, broken only be a depression 150 meters in diameter which is probably an impact crater. The surface seems to be very rocky so, once again, probably a junk heap asteroid made up of carbonaceous chondrite. It could be Bennu’s evil twin.

The gringa has discovered that at this time, 2008 EV5 is the favorite because it seems to be filled with “cobbles” or stones that meet the dimensions best suited for the ARM robotic retrieval system. I am so disappointed that what may be the most important asteroid of my lifetime will not have a clever or catchy name like Itokawa or Bennu. The world will know the final decision sometime in 2019. The gringa is crossing her fingers for an asteroid with a really cool name, like Gringa2015.  A girl can dream, right?!

Sources and Photo Credit: www.nasa.gov