Amazing Grace and the Conveyor Belt

Is there a way to stem the tide of sea level rise due to climate change? I mean, if we can’t build a seawall around the coast of every continent and island, what other option is there other than an eventual mass human migration inland? Well, NASA thinks there very well may be a solution.

The Earth may be saving herself. Climate change researchers have been collecting data from NASA satellites to determine where all this extra liquid water from melted ice sheets and glaciers is ending up. It seems the Earth has absorbed over three trillion tons of water (that’s about the equivalent of what’s in Lake Huron) that are replenishing depleted lakes and underground aquifers. Now, this is great news but not a permanent fix. Researchers estimate this temporary band-aid will slow sea level rise by about twenty percent. Earth is buying us Earthlings some more time to get our you-know-what together and fix this mess we have created.

So, how does this “band-aid” work? The Earth’s regular water budget is provided by annual amounts of water evaporated from the oceans. This becomes precipitation that returns to the Earth through rainfall or snow. It then recycles back into the oceans as runoff or through rivers. As mankind’s use of groundwater has dramatically increased, the Earth has become quite thirsty as reservoirs are depleted. It has become a sponge, compensating for this unprecedented loss by absorbing what is melting from ice sheets and glaciers. This has served to curb rising sea levels despite the fact that glaciers and ice sheets continue to melt.

Now scientists are scrambling to recalculate future models and adjust previous projections of sea level rise as a result of the Earth’s warming oceans. So, although sea levels are still expected to rise, Earthlings have a little bit more time to solve the problems that will cause. But, once the Earth has slated her thirst, all that meltwater will then become a problem.

NASA is using a twin satellite system, GRACE (Gravity Recovery and Climate Experiment), to measure how much water is being stored within the Earth. Since scuba divers can’t delve into these underground reservoirs, just what kind of digital dipstick is being used? The satellites use gravity to measure liquid. The gringa scratches her head and says, “Um, what? A gravity yardstick? How does that work?”

As the twin satellites orbit the Earth, they measure the distance between themselves. Their measurements are so accurate and precise, they can get as close as a strand of human hair. Amazing! But, I digress. GRACE then transmits the data to Earthling researchers who use the information to measure any gravitational change in the Earth that is the result of any change Earth’s water distribution.

By using this method, scientists have measured how much water has been stored within Earth’s continents as a result of ice sheet and glacier melt. This is the first study of its kind. And, according to NASA’s mission to use technology to safeguard the future of Earth and the lives of Earthlings, the agency has shared this knowledge with other scientific communities around the world.

And GRACE is proving her mettle in other areas of climate change data as well. The satellites are tracking circulation and current patterns within the Atlantic Ocean. The typical current pattern of the Gulf Stream carries warm, tropical water northward to Greenland. By the time it arrives at its northern destination, the water has cooled significantly. Colder water is denser so the water that originated from the tropics, and was riding at the surface. has sunk as deep as two miles within the ocean by the time it gets to Greenland. The colder, heavier, bottom water is then dragged back South.

In this way the waters of the Atlantic Ocean are consistently agitated, cooled, oxygenated and nutritionally refreshed. Oceanographers call this pattern the Atlantic Meridional Overturning Circulation (AMOC). However, the gringa prefers the common name, the “Conveyor Belt” of the Atlantic.

The Atlantic’s “Conveyor Belt” effect is like an air conditioner for the world’s oceans. It is critical to modulating the temperature of the Earth. Data collected from GRACE has revealed that the “Conveyor Belt” is slowing down. Researchers are uncertain if this is directly caused by climate change or if other factors are at play.

GRACE is going to help answer these questions. One way is by measuring gravity data from the bottom of the Atlantic Ocean. Changes in the ocean’s currents will result in pressure changes that GRACE can detect with gravitational measurements.

And GRACE is also contributing to the development of practical solutions that can be implemented right now, helping the people of Brazil. 2015 was the worst year in over three decades for drought in Brazil.

Hydrologists were able to use data collected from GRACE to calculate that in a three year period Brazil lost about fifteen trillion gallons of water each year. Water levels of aquifers and rivers were also analyzed.

Brazil is heavily dependent on the country’s rivers to provide water for their people, electricity production and for critical agriculture. The data provided by GRACE enables the Brazilian government to create models that will simulate future expected droughts. This makes it possible for the nation to plan effectively, monitor their water resources responsibly and continue to provide for the water needs of over 200 million Brazilians.

And those are just some of the facts about “Amazing GRACE”.



Image Source:








Warming Lakes & Rivers = Trouble

It’s pretty easy to find climate change articles discussing the changes that are taking place in the world’s oceans. But, the gringa asks, what about the lakes and rivers of the Earth?

I grew up on a river. I love rivers. I love canoeing and floating down rivers on tubes and camping out alongside the banks of a river. What’s happening with these rivers I love? And what about lakes? Every summer we take a traditional three day weekend family trip to one of the most beautiful lakes in Texas. What’s happening to this fabulous lake? Unfortunately, the research shows that these are all changing as well.

NASA’s response to this change is to create a “global water cycle budget”. It covers a ten year period of the Earth’s freshwater concerns. This will be the baseline by which future “global water cycle budget’s” will be compared.

The water cycle involves the entire environmental process of how water moves, in all forms, around this big, blue planet. As depicted in the image posted it is easy to trace how water evaporates from the surface of the Earth. As it rises into the atmosphere it cools, condenses into clouds, then returns to the Earth as precipitation (rain, snow, hail,  or sleet). This is the kind of science the gringa learned in elementary school but it is, perhaps, the most critical environmental cycle for the continuation of life on Earth.

From the year 2000 until 2010 NASA collected satellite data  to estimate how much energy from the sun was required to move water. Hotter days means more evaporation of water within the soil. More evaporation means more moisture in the winds that transport this moisture throughout the world. Because the Earth is a closed system, any water that evaporates from its surface can be accounted for in the water vapor that eventually accumulates in the atmosphere. It’s kind of like taking a jar of pennies to the bank and getting dollars in return. It’s an even exchange of the same thing, money, but it exists in two different forms, pennies or bills. Water on Earth is the same. It’s either here on Earth as water or in the atmosphere as a form of precipitation.

However, the water model is a bit more complicated. Consider that each penny represents a different data set concerning where the water is specifically located, formed, or used. Such as: ocean, lake, evaporation from soil and plants, streams, rivers, human consumption. To help scientists manage all of this data they divide the Earth into seven land masses (Eurasia, South America, North America, Africa, Antarctica, Mainland Australia, Oceania/New Zealand/Tasmania) and nine ocean basins (North Pacific, South Pacific, Indian, North Atlantic, South Atlantic, Caribbean, Mediterranean, Arctic, Black Sea).

Over two dozen satellites provide scientists with data concerning precipitation and evaporation over the land masses and oceans. Researchers can track the movement of atmospheric water vapor, river runoff, groundwater reservoirs, soil moisture and snowpacks.

These important studies have already determined that lakes around the world are warming. This warming trend is affecting the ecosystems they are a part of as well as threatening the security of adequate freshwater supplies.

To come to the conclusion that lakes are warming, NASA used a twenty-five year compilation of data of ground measurements of over 200 lakes on six separate continents. On average, the lakes are warming about half a degree Fahrenheit every decade. Some lakes, the ones at higher latitudes, are warming even faster, one whole degree Fahrenheit per decade. That means that freshwater lakes are warming faster than the oceans.

As lakes warm, algal blooms increase. These rob the oxygen in the water from the fish. NASA’s models predict a twenty percent increase in these toxic algal blooms over the next century. Not only will this result in a chain reaction within the ecosystem wiping out the fish, as well as the wildlife and fauna that depend on those fish, but the blooms will also increase greenhouse gas emissions. Algal blooms are expected to produce methane emissions that will increase four percent over the next decade unless we Earthlings come up with a solution.

Solving the lake warming problem is a very important component of solving the climate change problem because methane emissions are 25 times more powerful than carbon emissions. A massive worldwide increase of algal blooms in freshwater lakes is a disaster we cannot allow to happen.

If the world’s lakes become a casualty of climate change, it won’t just be an environmental disaster, it will be a humanitarian disaster. These are important sources for drinking water, crop irrigation, and the production of food fish that are an important protein source for vulnerable populations around the world. Some researchers are already detecting evidence that productivity in warming lakes is already declining.

Out of the 37 largest aquifers on Earth, 21 are already past the sustainability tipping point and are being depleted. Another 13 are classified as “significantly distressed”. Eight are classified as “overstressed”. “Distressed” and “overstressed” means that these water sources have no natural replenishment to offset consumption. Five more were classified as “extremely stressed”, being depleted but with some replenishment occurring.

These were the conclusions of NASA’s study of ten years of data from the GRACE satellites. The GRACE satellites measure how Earth’s gravity is affected by existing masses of water. What NASA reports is alarming and difficult for the gringa to swallow, even with a glassful of water. That means that almost one third of our world’s groundwater is rapidly disappearing. And what’s even scarier is there is no reliable data that can predict just exactly when these wells will run dry. Yet, we continue to consume rather than conserve.

One of these overstressed reservoirs is the Arabian Aquifer System. It sustains over 60 million people. If we think there’s trouble in the Middle East right now over regional power struggles and the global fight to dominate the oilfields for profit, what the heck can we expect to see when these people have nothing left to drink? What kind of mass exodus will occur when that happens? This is a problem that must be solved. When climate change deniers scoff at the idea that climate change is the single most issue that threatens the national security of all peoples, they have no idea what they are talking about.

If Americans thought the California and Texas droughts were painful, consider what could occur in India and Pakistan, home to the second-most overstressed aquifer, the Indus Basin. Then there’s the third most overstressed water source, the Murzuk-Djado basin in north Africa. These regions are home to almost two billion people! Think about the Syrian refugee crisis. We ain’t seen nothin’ yet.

While working toward a solution, scientists cannot agree on any projected timeline of “time to depletion”. And when the gringa says they cannot agree, I’m talking about discrepancies of warnings of ten years to twenty-one THOUSAND years! However, one thing that these scientists DO agree on is that in a water-scarce society that is water dependent, this kind of ignorance is intolerable. Well, the gringa is glad to hear that.

Because groundwater reservoirs are so deep beneath the surface of the Earth, the only method to accurately measure just how much is down there is to drill, baby, drill. It’s gonna cost a lot of money, but the experts say it has to be done. NASA is committed to using its technology, personnel and data to help secure mankind’s future and improve lives around the world. By sharing knowledge freely with scientists around the world, the agency hopes to increase understanding that will lead to solutions.

The gringa waits to hear NASA’s announcement of a challenge like “Dig A Hole, Save The Planet”. The gringa has every confidence that NASA will continue to lead the charge to save us Earthlings from ourselves and the messes we continue to make. These challenges are simply a way for us to redeem ourselves after making such awful messes.

Source & Photo Credit:


Hercules & Plankton

Most of the time when the name NASA pops up images of stars and far flung planets and rocket ships come to mind. We often forget that NASA is interested in studying life on ALL planets, including our own. Yesterday, November 12, NASA officially launched their airborne laboratory on a C-130H Hercules. It headed north to St. John’s, Newfoundland, Canada to begin its earthbound mission “North Atlantic Aerosols and Marine Ecosystems Study” (NAMES). The Hercules was accompanied by sea by the research ship “Atlantis” that is operated by Woods Hole Oceanographic Institution.

Together, these two research vessels will study the yearly cycle of phytoplankton and the effect small airborne particles produced by the ocean have on the North Atlantic’s fragile climate. Data will be collected throughout early December. This location has been chosen to study because this is the where the Earth’s largest phytoplankton bloom occurs each year.

The organic compounds the bloom releases can be detected as far away as the waters surrounding Ireland. By studying the plankton’s ecological and biological processes year after year, the ocean’s health and biology can be documented and the relationship between the ocean and its gaseous exchange with the air, which in turn influences clouds and climate, can be better understood.

The Atlantis is in for a four week cruise on the Atlantic Ocean where it will routinely rendezvous with the Hercules so that the two laboratories can coordinate and share computer models, satellite data, and the input of all of the scientists on board each vessel.  They hope that their efforts will help improve readiness and response to the changes predicted to occur in Earth’s ecosystems due to aerosol changes within our world’s warming ocean.

Plankton, one of the smallest organisms on Earth, are, ironically, strongly connected with climate change. Plankton is the first stage of the ocean’s food chain. Changes there create a chain reaction that affects everything else in the world. At present, there are conflicting scientific theories as to the details of how plankton’s aerosol emissions create changes. One goal of these missions are to coalesce the arguments into one sound approach.

NASA is committed to leadership in tackling the serious environmental issues that affect the entire world today. NASA makes the gringa’s little heart swell with pride by freely sharing their knowledge with institutions worldwide. In fact, over twenty different research and academic facilities are involved in the research operations of this mission. NASA doesn’t just see the earth as interconnected environmentally, it also understands the interconnectedness of humanity. That’s one reason the gringa is their biggest cheerleader.