Chandra & the Jellyfish


IC 443 is more commonly known as the Jellyfish Nebula. What the heck is a nebula? Well, a nebula is a cloud of dust and gas found in outer space. Sometimes, at night, if you find yourself in the perfect spot for stargazing, you may notice a spot in the sky that is brighter or, perhaps, a darker shadow across a brighter patch.

The Jellyfish Nebula is thought to be the gas and dust leftovers of a supernova event that happened in outer space about 5,000 light years from planet Earth. What the heck is a supernova? Sometimes a star suddenly becomes much brighter because of great explosions happening within the gas that it is made up of. When it becomes so explosive and heated that it ejects most of its mass, it has gone supernova. So, in the simplest of terms, a supernova is a star that has exploded BIG TIME.

The gas and dust debris of the Jellyfish Nebula may also be the material that created a strange object found due south of the nebula. This object is officially called CXOU J061705.3+222127. Scientists just call it J0617. These same scientists believe this object to be a pulsar. What the heck is a pulsar? A pulsar is a neutron star that is rapidly spinning around. It also emits pulses of radio waves and electromagnetic radiation.

What the heck is a neutron star? A neutron star usually has a radius less than 18 miles but is densely packed with neutrons. They are most often created when a massive star goes supernova and leaves behind its core. As a massive star runs out of fuel the stage is set for a supernova explosion. When the fuel runs out, the outer layers collapse. When these outer layers come into contact with the core, they then bounce outward creating the supernova explosion. In the end, all that’s left is the core which is now spinning like crazy and emitting pulses of radio waves and radiation.

The post photo of the Jellyfish Nebula has an inset that shows the region surrounding J0617. Scientists are interested in the small ring that appears to surround the pulsar. There is also a feature of something jet-like that passes through the pulsar. The scientists want to determine if this emission is directly related to the pulsar or has a different source. Possibilities are a high speed wind of particles or something like a shock wave.

Nothing definitive has been concluded regarding when the supernova event occurred. Researchers have offered estimates ranging from 3,000 years ago to 30,000 years ago. Needless to say, the scientists have much more to learn about the Jellyfish Nebula and J0617. If the dear reader is interested in more details than what the simple-minded gringa can offer, check out the on-line source “The Astrophysical Journal”.

Research on the Jellyfish Nebula is managed by NASA’s Chandra program. Specifically, Chandra is an X-ray Observatory. It is the most powerful orbiting X-ray telescope in the world. Scientists from all over the world have access to the images generated by this program. The gringa loves how NASA likes to share knowledge and is not stingy with their technology.

Chandra studies cosmic X-rays, or, the effects of matter that has been heated to millions of degrees. High temperatures that create detectable X-rays happen throughout the universe wherever there are strong magnetic fields, powerful forces of gravity, or extreme explosions (like a supernova).

When a supernova happens, charged particles slam into one another. This causes them to produce energy in the form of photons. As photons fly through space, leaving the scene of a supernova event, they actually become light. These are just the sorts of things Chandra has been tracking and recording since 1999 when the Space Shuttle Columbia launched Chandra into outer space.

Chandra has eight mirrors that X-rays slam into, ricochet off, and are focused onto a focal plane that is half as wide as a human hair.  The focal plane captures the image of the X-rays and records the number, position, energy and arrival time. Two spectrometers then analyze the X-ray to determine what form of energy it is and other details of its physical condition.

Chandra is housed in a spacecraft observatory with two sets of thrusters. This observatory was the largest and heaviest payload ever launched by a Space Shuttle, weighing in at liftoff at 50,162 pounds. If you had eyes as powerful as Chandra, you could read a stop sign from twelve miles away. Chandra’s mission duration was originally set for five years. The mission began in August of 1999 and she is still going strong.

If the dear reader would like to delve into more information about Chandra, visit http://chandra.nasa.gov/

 

Source & Photo Credit: www.nasa.gov

 

“Back Up Life…”


SpaceX is the private company that is contracted with NASA to supply the space agency with the “Dragon”, a crew transport spacecraft designed for large crew capabilities as well as deep space missions. Elon Musk, the creator of SpaceX, recently gave an interview with GQ magazine. In that interview he voiced his concerns regarding accomplishing the Mars mission in light of the fact that this world’s nations just can’t seem to grow up and stop all of this war mess.

Musk’s big dream is to colonize Mars. Considering his accomplishments, the gringa believes he can achieve his dream. I mean, just think about it: he leads a company that has managed to develop technology that can design and build rockets at a fraction of the cost as NASA. SpaceX is also the first private company, ever, in all of the world, to have launched a spacecraft into orbit and have it successfully return to Earth. SpaceX has impressed NASA so much that it is contracted to manage resupply missions to the International Space Station as well as transport the astronauts between the ISS and Earth.

Musk believes colonizing Mars is more than just a glamorous adventure. He believes this mission is critical to the ultimate survival of the human species. Considering how mankind has been consistently annihilating one another since a caveman first created a club to sock it to his romantic rival, the gringa has no trouble at all believing Musk’s worst-case scenario of a natural or man-made disaster destroying life as we know it on Earth and the survivors starting over somewhere else. Why not Mars? Musk’s philosophy can be summed up in this statement, “You back up your hard drive… Maybe we should back up life, too?”

In addition to reusable rocket technology and personnel space ferries, SpaceX is developing “Mars colonial transport architecture” to further advance toward the ultimate goal. The gringa asks, “What the heck is that?”

A critical piece of this architecture is commonly called the BFR rocket (it has a technical name but Musk and the developers refer to it as BFR). Now, the gringa likes to keep things family friendly on these blog posts, but, just so you know, BFR actually stands for Big F*#@ing Rocket. I MEAN IT! No kidding! I love that! Scientists that have a sense of humor are right up the gringa’s alley.

The BFR is a two part rocket, booster rocket + spaceship. The booster is to break through the gravity and atmosphere of Earth. Once free, the spaceship is designed to travel through deep space to Mars. The gravity of Mars is weaker than Earth’s and also has a thinner atmosphere. Because of this the spaceship does not need a rocket booster to blast off from Mars for a return trip home.

In order for Martian colonists to create a self-sustaining environment on the Red Planet, what must be done? The planet has to be terraformed to create a warmer environment that will lead to ice melts so that it becomes a “watery” planet. Then fauna can be introduced that will help to create a breathable atmosphere. Musk considers Mars to be a “fixer-upper”. The gringa likes that term.

Nuclear energy could be used to help warm the planet. By converting technology that has been used to destroy life, the fusion bomb can be repurposed into technology that creates and sustains life (now, the gringa LOVES that!). As tiny pulsing suns at each Martian pole, this technology would create a warming effect without radiation and fallout. Mars would then experience the same benefits Earth has from its proximity to the Sun.

Now, NASA is devoted not only to preserving life on the planet Earth, but any life that may possibly be present throughout the cosmos. It has a Mars directive in place forbidding any mission landing near any area containing the potential for liquid water. That is because of the possibility of the presence of bio-organisms, life, causing cross-contamination, whether those organisms are of Earth and contaminate Mars or vice versa.

The good news, as far as the colonial mission goes, is that NASA’s research has not detected any life present on Mars, even on the microscopic level. So, if it is eventually determined that no life at all exists on Mars, the moral dilemma of invading, contaminating and/or destroying it is resolved and colonization can get the green light. The only life on Mars that might exist that NASA’s current research methods are unable to detect is subterranean microbial life.

So, who would like to give the pioneering life a shot and actually become a MARTIAN?  The gringa says, “Where’s the sign up sheet?”

Now, it’s pretty clear that Musk is the type of personality that is driven. There is very little that seems to get in his way when he has set a goal. His biggest concern regarding achievement of colonizing Mars is the very real reality of war. The Earth has never seen a single day in modern history where there has not been an active war somewhere. War could be the very thing that prevents progress.

War stood in the way of progress in the early 1900’s. It was supposed to be a golden era with no more war. Then, guess what? BAM! World War I started. Then World War II. Then the Cold War. However, the Cold War eventually led to the space race, so progress did come of that mess.

How possible is it, then, for progress toward colonizing Mars be disrupted? Pretty darn possible. So, the gringa says to all the religious zealots and war profiteering warmongers everywhere, “JUST STOP IT! KNOCK IT OFF! WE ARE SICK OF IT!”

Now, I know you must be itching to see just how much more fantastic Musk’s dream can get. Well, just check out his timetable. He is determined for all of this to be accomplished within his lifetime. If Musk gets his way (and he seems very apt at always getting his way) the world could see the first boots on the ground on Mars within the next ten to fifteen years.

In fact, before the end of 2015, or early in 2016, he plans to make a big announcement regarding his Mars-colonization plan. The gringa cannot wait to hear this crazy plan because I’m a crazy gringa who is his biggest fan!

 

Source: www.gq.com

Photo Credit: www.joserojas.org

The “Little Green Men” Star


If you happen to be a writer looking for fodder for a great science fiction story, you may want to delve into NASA reports regarding star KIC 8462852. NASA is fascinated by the strange goings on about this star and bears much resemblance to a pulsar named LGM-1 (Little Green Men). This pulsar emitted strange signals that created a stir within NASA and were ultimately determined to be a natural phenomenon. The strange events involving star KIC 8462852 have yet to solved.

Monitoring this star has been the responsibility of the Kepler mission for the past four years. In 2011, and later in 2013, two significant, and as yet unexplained, events took place. What do scientists really know? They know that the star dimmed because “something” passed in front of it large enough to block its light. The gringa says, “What the heck?”

In September scientists finally reported their theory and findings on what could possibly explain these strange events. They are blaming a “swarm” or “family” of comets. The gringa’s imagination begins whirling and thinks, “Or perhaps a fleet of starships.” Another theory suggests a cluster of planetary fragments and asteroids.

Scientists are using NASA’s Spitzer Space Telescope to probe deeper into this mystery. To learn more, scientists, who first studied the star using observations conducted in visible light, then tried using infrared light. This is because if asteroids were involved and actually impacted the star there will be a whole bunch of infrared light surrounding the star and the dusty old bits of gravel from a pulverized asteroid should be at the perfect temperature to glow like a firefly under infrared wavelengths.  And detecting infrared light is one of things the Spitzer Space Telescope is designed to do.

This year the Spitzer took a gander at star KIC 8462852 while looking at hundreds of thousands of stars in its search for planets. One thing in particular that Spitzer was looking for was infrared emission of space dust that encircled stars. Spitzer didn’t find any of this type of dust around star KIC 8462852 so scientists think the asteroid collision theory can probably be scratched.

So, the gringa wants to know just what their thinking is now. What the scientists seem to be leaning toward is the possibility of a “swarm” of cold comets. For such a theory to work, this cluster of comets would need to have an unusually long orbit around the star. They also call this theoretical comet cluster a “family” because it would require a “pack leader” to explain some of the phenomena. The larger “big daddy” that would be in the lead would have been the one to block the star’s light in 2011. In 2013 the rest of the family would have been passing through in front of the star and blocked the light again in the strange pattern that was recorded.  This would explain why in 2015, when Spitzer observed the star again, there were no infrared signatures. The comet “swarm” was long gone and probably around on the other side of the star in its orbit progression.

The gringa must confess to thinking, “Mm hmm. Scout ship shouts, ‘The coast is clear!’ and the support ships soon set a course for the coordinates.” Oh yes, what an imagination! But please don’t judge the gringa! I just couldn’t help myself when NASA itself goes and names a pulsar something like “Little Green Men-1”.

NASA admits that what is going on with this star is strange and not understood. Their interest is extremely piqued so study and research will continue until the curiosity of these scientists are satisfied. And I ask you, is that not the greatest job ever? For every little kid that has lain on their back in the grass in the dark of the night staring up at the stars and wondering if there really are “little green men” out there, is that not just the coolest job ever to grow up and get to do!

Source & Photo Credit: http://www.nasa.gov

 

 

 

The Girl Who Loved To Count


And who says girls are bad at math? Most definitely Katherine Johnson is not!

Born in West Virgina in 1918, she was a girl who grew up in a time when not only were women not expected to grow up and do great things, but a woman of color had the additional obstacle of racism. But that didn’t stop Katherine from counting and that is the fascination that led to her greatness that culminated in her service at NASA.

When describing her youthful obsession, she said, “I counted everything. I counted the steps to the road, the steps up to the church, the number of dishes and silverware I washed… anything that could be counted, I did.” And what did all that counting lead to? The 2015 National Medal of Freedom.

She was an amazing achiever. At the tender age of ten she was a freshman in high school. Imagine that in the time period and circumstances she was in! The gringa is in awe! And, apparently, her father was as well. He did what was necessary to see that his daughter fulfilled her potential.

Eventually he relocated the entire family to Institute, West Virginia so Katherine could complete her education and she graduated college at the age of eighteen.  Katherine then went on to teach, raise a family and eventually work for the National Advisory Committee for Aeronautics in 1953 which would later be replaced by NASA. In the time before there were computers to do the tedious job of counting and recording, people like Katherine did the job.

As a “human computer”, Katherine completed mission assignments like calculating the trajectory for the first American in space, Alan Shepard. Once computers did exist, Katherine was the back up that double checked the computer’s accuracy on calculations. Her work was so respected that before John Glenn made his spaceflight aboard Friendship 7, he specifically asked for Katherine to do the recheck on his mission calculations.

Katherine worked on the Apollo Moon landing mission as well as the early beginnings of the shuttle program. She continued to serve the people of the United States of America, as well as the entire world, through her extraordinary work at NASA until 1986.

The Presidential Medal of Freedom medal that she was awarded on Tuesday, November 24, 2015, was not the only merit to her name. In addition to honorary doctorates, in 1967 she received the NASA Lunar Orbiter Spacecraft and Operations team award for her work in navigation.

What does NASA have to say about Katherine? The following are quoted from NASA Administrator Charles Bolden’s public statement:

“She’s one of the greatest minds ever to grace our agency or our country…”

“Katherine’s legacy is a big part of the reason that my fellow astronauts and I were able to get to space…”

NASA Deputy Administrator Dava Newman said:  “We are fortunate that when faced with the adversity of racial and gender barriers, she found the courage to say ‘tell them I’m coming’.

And the gringa will close with those simple yet bold words from a great woman.

 

 

Source & Photo Credit: http://www.nasa.gov

 

 

“Spacespresso” Please


The gringa is most definitely a “Trekkie”. No big surprise there, eh? I just love all the gadgets they have on those shows. One of my favorites is the “tri-corder” (which, forever and a day I thought was actually “tri-quarter”). This little doo-dad scanned, analyzed and recorded data. It could detect life forms through a rock wall or diagnose a disease or injury. Well, guess what? NASA may very well be getting some! They’re not called “tri-corder” but, the concept is the same.

This fascinating invention is the brain child of NASA’s Jet Propulsion Laboratory that’s located in Pasadena, California. It’s small, portable and called a “chemical laptop”. Personally, I think that name has absolutely no imagination and wish they could have come up with something more akin to “tri-corder”, but no one asked me.  If they had I would have called it something like “hand lab” or “Doal” (Detector of alien life) or maybe “Cie” (Coolest invention ever) or, as you will read later and understand, “Spacespresso” (my personal favorite). But, like I said, no one asked me.

This chemical “laptop” is actually not a laptop at all. It’s really a miniature laboratory, about the size of a regular laptop and thicker. The above picture shows the chemical laptop sitting beside a regular laptop, both on top of a rover. The chemical laptop analyzes material samples for signs of life. If it ever makes the grade for an off-world mission it will be an historic moment as being the most sensitive technological device to ever leave planet Earth.

NASA has big dreams of sending it to Mars or Europa. If they get their big chance, instead of using the “laptop” to scan a bit of this or that, it will, gulp, swallow the sample. (The gringa envisions memories of the “Hungry, Hungry, Hippo” game I played as a child.) Once consumed, the laptop can be programmed through various “apps” (we all know what those are!) to test for all sorts of things like amino acids or fatty acids, which are the basic building blocks of life as we know it.

Now, at this turn in the story the gringa gets totally sidetracked with the amino acid thing. As I peruse my research material I scratch my little head and think, “Really? I had no idea!” Taking the risk that my dear reader may already know interesting tidbits about amino acids, I will share what fascinated me so.

Apparently, amino acids are either right-handed or left-handed. In other words, there are two types that are mirror images of each other. The left-handed booger is the standard for life as we know it on Earth. As NASA studies samples, they are looking for samples that are predominantly one or the other. A 50/50 mix is not considered to be a biological form.

The challenge for NASA has been developing a way to look for both types in a single sample. And, VOILA!  The chemical laptop! Now, this little lab needs liquid samples which are not easily found on other planets that are usually colossal frozen rocks in orbit. Now, for you folks that love your espresso machines, you will totally get the technology involved to mix a sample with a bit of water then heat the mix until some of the sample’s organic molecules mix with the water.

When “Spacespresso” then receives the liquid sample it injects a fluorescent dye into it. The sample flows over a microchip that detects which is a leftie or which is a rightie. These pass by a laser and are separated according to leftie or rightie status. Once separated, the lefties and righties are mixed with a chemical that interacts specifically with one or the other. Finally, they emerge into a channel and the scientists can then determine how many lefties and how many righties there are.

Field tests began in 2014, which is the first step to reaching the ultimate goal of getting “Spacespresso” to Mars. The next field test is going to be in the Atacama Desert in Chile. NASA, true to its mission of helping all mankind with its work, is considering how this technology can also be of benefit in the world of medicine and not just their own Mars mission dreams. The gringa waits with bated breath.

Source and Photo credit: http://www.nasa.gov

 

Orbs In Orbit


When thinking about NASA and robots, the first thing that comes to mind is probably the robotic arm that is used frequently to snag things in space around the International Space Station. However, NASA is way beyond just a robotic arm. Entire robotic spacecrafts are the technologies that are in development. The ultimate gaming experience has got to be the joystick controls of these babies as they maneuver through their missions in orbit around Earth. The Hubble Space Telescope is just one such example.

Now, the Hubble takes beautiful panoramic space photos. What about if you need to pick a space splinter out of something. Are there robotic orbs designed for that kind of delicate work? Well, hopefully, in the future, if a satellite gets a speck of space dust in the wrong nook or cranny, NASA’s Visual Inspection Poseable Invertebrate Robot (VIPIR) should have the perfect set of robotic baby blue’s to get the job done. This robot is really an articulated borescope that has a zoom lens. Robotic eyes (that eighties song “She’s Got Bette Davis Eyes” is now playing through my mind relentlessly).

VIPIR will play sidekick to Dextre, the handyman of the future who is already on the job. Dextre is a robot developed by the Canadian Space Agency. Ya know the good ol’ days when you pulled up to the full service lane at a gas station and the attendant came out to pump your gas, clean your windshield and check your tire pressure and fluid levels? Well, that’s kinda what Dextre’s job description is. Dextre is the critical element in NASA’s Robotic Refueling Mission (RRM).  A two-armed robot, he demonstrates his abilities of servicing and refueling satellites in outer space. Although he’s not pumping crude. A fill-up from Dextre involves the transfer of xenon.

Now, the gringa’s not afraid to get her hands dirty. I’m sure my salary requirements are much less than Dextre’s maintenance expenses. I’m more than willing to put on a pair of coveralls, a cap and be ready for the “ding-ding” of a passing satellite or spaceship that needs their tank topped off. I do believe I finally see my chance at a space job I’m actually qualified for! My hopes are rising higher and higher that my astronaut dreams will some day come true.

Source:  www.nasa.gov

Photo credit:  www.news.yahoo.com

Asteroid Ahead! Redirect! Redirect!


I am a sci-fi fan. I love to read science fiction books, watch science fiction movies and even indulge in trolling some of the latest conspiracy theory sites on the future Armageddon triggered by an apocalyptical asteroid-Earth collision event. One thing I have learned throughout my many years of science fiction madness is that there is usually an itsy-bitsy kernel of truth within the fantastical story. The gringa has found such a tidbit of truth within the asteroid-Earth collision story and it comes straight from NASA.

A one of a kind robot mission is being planned at NASA regarding an asteroid near Earth. The robot’s job within the next decade is to gather a mega-ton boulder from an asteroid and redirect it into an orbit around the Moon. This asteroid sample would be explored about five years later and samples returned to Earth from its surface.  This mission, begun in 2013, is called “Asteroid Redirect Mission” (ARM) and is all part of the plan for getting humans to Mars in the 2030’s. This little information nugget is what is fueling the preppers and conspiracists who think all of mankind is doomed sometime this September by an asteroid-Earth catastrophe. As these folks hunker down in their bunkers, the gringa asks the dear reader to simply read on and amuse yourself.

Out of the thousand-plus asteroids astronauts have to select from, they have four that are favorites. A bit more research on their orbit, velocity, spin and size will be conducted for a few more years before a final decision is made. To speed things along, NASA also has created an initiative called the “Asteroid Grand Challenge”. Its purpose is to identify asteroids that pose a potential hazard not just through NASA’s efforts but through collaboration with other cosmic partners. For the astronaut hopeful, physicist, hobbyist astronomer and such in my reading audience, who knows, perhaps you could lend a hand and be a part of something fantastic. Since the plan to launch ARM is scheduled for some time in the 2020 decade, you’ve got plenty of time to get to work.

Now, considering my insatiable curiosity, the gringa has to ask, “Why should we spend so much taxpayer money and risk the lives of astronauts to collect some kazillion years old space rocks?” The answer? Asteroids are considered to be the remnants of the Big Bang. They are the left overs. By having access to an asteroid as near as our Moon, scientists can study more samples than ever before. This helps to satisfy their insatiable curiosity as to how our solar system was formed and life on Earth began. In other words, the discoveries could lead to mankind saving the planet and figuring out how to colonize another planet. There are also possibilities of finding frozen water sources which could hold all sorts of interesting things within to study under a microscope, maybe even a frozen bubble of breathable air. That would indicate the possibility of a sister planet that a human could survive on without a protective suit or artificial environment. And, of course, there are always “those” people who hope to find another energy and fuel source. You know, the ones who don’t look at outer space with curiosity and wonder but with dollar signs in their eyes.

The mission will develop a planetary defense technique that could be used to deflect an asteroid that posed a dangerous threat to Earth. Now, if you’re already questioning whether it’s even a good idea to nudge an asteroid over to the Moon and ask the sort of questions the gringa asks, like, “Um, guys, could it just be THAT could become the asteroid that ends up threatening all civilization?” Rest assured, NASA has thought of that as well. That is the reason for the studies on size, mass, velocity and speed. They want to capture an asteroid large enough to provide great research opportunity but small enough to burn up in the atmosphere if it did go rogue and plummet towards Earth.

The gringa also considers, “This all sounds fascinating but, exactly how does this get us closer to Mars?” Well, ever since mankind has begun to climb into rockets and physically explore the cosmos, astronauts have been dependent upon supplies and support from Earth. This has limited the amount of time astronauts can remain in space and how far they can travel. Such missions are labeled “Earth Reliant”. The “Proving Ground” of the deep space environment surrounding the moon is closer to what space travelers will experience on a trip to Mars. For example, solar and cosmic radiation is stronger outside low-Earth orbit and closer to the Moon.

Presently, a typical astronaut mission on the International Space Station (ISS) can last up to six months (about 180 days).  A manned mission to Mars could take 500 days or more. Most of that time is simply in transit back and forth (about six months each way). To become completely Earth independent journeys,  new technologies and methods will be tested on the asteroid.

One such technology to test is Solar Electric Propulsion (SEP). This would do away with chemical dependent propulsion allowing larger on-board payloads in place of the weight that would have otherwise been dedicated to fuel. A larger payload means more on board supplies. More on board supplies means a longer mission capability. Solar propulsion also means energy independence. Energy independence means limitless distance capability of travel within our solar system. By having the asteroid, NASA can test the SEP system as a robotic system that can simulate sending cargo to Mars well before habitants arrive.

Once a robotic spacecraft has successfully landed on Mars, the next phase would then be to launch a crew to Mars. This crew will need to have the skills and technology to maneuver and dock with the Martian robotic spacecraft. This can be practiced on the asteroid delivered to Moon orbit.

Now, a trip to Mars is not a hot-shot, non-stop flight. The plan is actually to have a staged journey. Between Earth and Mars would be multiple ports of call similar in nature to the current ISS. The Orion is NASA’s current exploration craft that will be used in future solar system exploration.  All astronauts slated for Martian missions would then need to know how to dock the Orion with these stations.

What about the protective suits astronauts wore on the Moon landing and currently wear when conducting maintenance and repairs in space at  the ISS? Are these suits sufficient for a Mars mission or do astronauts require new technology there as well? Spacesuits, also known as Extravehicular Mobility Units (EMUs), will need upgrades to the primary life support system (PLSS) due to the carbon dioxide atmosphere of Mars. Engineers are also working on upgrades that will provide better oxygen regulation and humidity control. The gringa thinks, “Dear God, please have decent humidity control. We don’t want to see leather skinned astronaut faces with crazy, frizzy hair.” The EMUs also have cooling systems and atmospheric pressure regulators that will be upgraded to accommodate holding more fluids for longer periods of time. Durability will also be a factor. Astronauts traveling to Mars will need these babies to last a long time and be easy to maintain and repair. The new designs will be tested on the asteroid missions before actually going to Mars. It would really suck to be 10 days out on a 500 day mission only to find out your spacesuit was not going to be able to hold 17 months worth of pee. At least on the asteroid you can turn around and go home and change your pants.

Within the next five years, the world can expect to see a new object floating around the moon and regular travel back and forth to study, research and rehearse for even greater events in the future. Within the gringa’s lifetime, I may just witness humans arriving on Mars. Who knows, by the time I’m old and ornery enough that my kids and grandkids have stolen my driver’s license, hidden my car keys and put my car up on blocks, I may just buy a damn ticket.

Sources:

http://www.nasa.gov/content/what-is-nasa-s-asteroid-redirect-mission

http://www.nasa.gov/content/how-will-nasas-asteroid-redirect-mission-help-humans-reach-mars

Photo credit: spectrum.mit.edu