Re-Blog: Plasma Power Is Problematic

(Originally posted 9/7/2017 on Read With The Gringa)

If the gringa’s dear readers are anything like herself, you have spent plenty of time watching shows like Star Trek and reading fantastic science fiction. That means you’ve heard plenty of references to plasma: plasma storms, plasma discharges, plasma cannons, etc. But what the heck is plasma? Is it good for anything? Can we harness its power? Here’s the scoop on plasma.

Plasma is an ionized gas. What that means is that atoms, molecules and all kinds of stuff are constantly being converted into ions. This happens by removing electrons from the affected substance. An ion contains an electrical charge when conversion is complete. That means plasma packs a wallop of a punch. And there is lots of plasma throughout our Universe.

The Sun’s mass makes up nearly the entire mass of our Solar System, 99.85% of it. That mass creates gravity so powerful it squishes things together, like atoms, creating a fusion reaction which makes… wait for it… PLASMA.

99.999% of the Sun is plasma. Scientists estimate that more than 99% of all matter exists in a plasma state. If so much of it is lying about, why aren’t we humans using it for electricity and power and stuff? Why are we still in the Stone Ages with coal and petroleum? Because cosmic plasma is a bit trickier than the plasma we find here on Earth, like lightning. The Sun’s plasma is not just electrified. It also has its own magnetic field. And, boy is it hot!

Because of the magnetics that are part and parcel of the Sun’s plasma, harnessing our nearest star as an energy source would prove to be highly disruptive to communications. Basically, radio frequencies would fry. You see, the Sun is a fusion nuclear reactor way up in the sky. The gringa’s not sure, then, if direct solar power would really be “green” energy.

To harness the power of cosmic plasma for terrestrial use, scientists would have to, theoretically, confine the reactor. Yep, that means putting the Sun in a box, so to speak. Despite years of research, little progress has been made to figure out how to do that and humanity survive in the end. One reason is because scientists have no idea how cosmic plasma and the resulting fusion reaction would affect any barrier they might construct as a containment field. Yeah, those invisible forcefields on Star Trek? Mm hmm. Pure fantasy.

But despite this frustration, scientists remain committed to finding a solution. They are well aware that the current energy sources of Earthlings are finite. One day all the coal will be gone. There will be no more crude to suck from the ground. And even developing more solar and wind energy supplies will only take the entire globe so far. Large industrial areas and densely populated regions will need the power of plasma if they want a constant, reliable power supply.

But why can’t scientists seem to make any progress? In order to test a theory, a scientist must conduct a controlled experiment that re-creates the conditions. Since there is no way to reproduce the 15 million degree Fahrenheit temperature of the Sun, um, yeah, progress is pretty much going nowhere. 

Sure, science has come up with fun gadgets like plasma balls that are basically sold as lighting novelties. But that glass bottle is not anywhere close to being sufficient to bottle a chunk of the Sun. Scientists literally have to find a way to put a sizable piece of the Sun inside of something.

And finding a substance that can withstand temperatures in excess of the 100 million degrees produced by fusion reactions has to do more than not melt. When the plasma comes into contact with the barrier, it must remain pure and clean. 

The gringa can only wonder what the heck might happen should those walls fail. Will half the globe be scorched to infinity in a split second? Will the survivors on the other side of the globe become so radiated they die a slow, agonizing death over the course of the next few weeks or months? Or will a wave of plasma ride the ionosphere to the other side and the survivors know that death is on the way because their blue sky turns blood-red? Or will they basically be cooked alive from a sudden increase in temperature? In other words, will the entire globe become a microwave oven?

Scientists claim that plasma energy will be the cleanest energy ever. Yet, at the same time they are conducting research on the effects of radiation and plasma damage. So, the gringa remains skeptical about the “green” selling points.

Science communities around the world hope to have the first plasma reactor operational by 2018.

Nuclear science professors at MIT explain that the general public shouldn’t expect any real development of commercial plasma fusion reactors for about two more decades. The gringa will be at an age by that time where I might actually appreciate the prospect of a quick and relatively painless death. But, for the sake of my children, grandchildren and great-grandchildren, I suppose I should keep a watchful eye on the developments of this future energy source.


Plasma Universe

Science Learn

University of California San Diego

Image Credit:

Video Credits:

Science Channel



Forget Trump – What About Fukushima?

(Originally posted 7/27/17 on Read With The Gringa.)

While the world has been distracted with all things Trump, everyone seems to have forgotten that the world’s worst industrial disaster is still unfolding. Yeah, remember Fukushima? That nuclear reactor that had 3 cores melt down after a 9.0 earthquake triggered a 15-meter tsunami that devastated Japan? Would you, dear reader, like the gringa, like to know what the heck is still going on? Well, Ima gonna tell ya. First, the basics on the history:

March 11, 2011: After said earthquake and tsunami, 3 of the 4 cores of the Fukushima Daiichi reactors melted down over the course of three days. 

The World Nuclear Organization (WNO) rated the disaster a 7 on the INES scale. What the heck is that, the dear reader asks? And what the heck does it mean? 

The INES is an international standard used to measure the significance of a nuclear event primarily determined by the amount of radiation ionization exposure. There is no higher rating than a 7. That being said, the gringa would like to know is Fukushima a true 7 or is it listed as a 7 simply because there is no higher rating to assign? I mean, would an INES rating of 9 or 15 or 28 be a  more honest reflection of what happened? But I digress. Back to what a 7 actually means as we know it.

Fukushima was given a 7 because during days #4 through #6 a total of 940 PBq (1-131 eq) was released of radioactive material.  But what does that mean? 

PBq does not stand for “Please Be Quiet” with regard to Fukushima. It refers to the metric measurement of radioactivity. It is shorthand for Petabecquerel. It’s root word, becquerel, is defined as:

“… the activity of a quantity of radioactive material in which one nucleus decays per second.”

When the prefix “peta” is attached it becomes a measurement equal to 10 to the fifteenth power becquerels. In other words, one-thousand-billion. Crazy number, huh? So Fukushima released 940 thousand billion radioactive nuclei into the sea and atmosphere. Sounds pretty awful, right? So why is the world’s media and national leaders seemingly unconcerned? Are they correct in their “no big deal” assessment? Should we just move on and continue letting the Trump circus and side-show dominate our attention?

Fukushima’s atmospheric radioactive releases had 2 primary contaminants: volatile iodine-131 and caesium-137. The iodine has a half-life of 8 days. No big deal there. The caesium, on the other hand, is a really big deal. It is easily carried throughout the atmosphere, has a 30-year half-life, so wherever it finally lands it’s going to be there for a very long time, a silent and invisible invader. But is it deadly?

Caesium is soluble. That means the human body can absorb it. The good news is that it does not concentrate within internal organs. After about 70 days the body is rid of the substance. 

The most highly concentrated atmospheric releases were detected around the end of March 2011. The good news is that in mid-March Japan had already anticipated this problem and taken preventative measures. 

A dust-suppressing polymer resin had been applied around the nuclear plant to suppress fallout, preventing the iodine and caesium from becoming mobile through wind and rain. By 2012, effective permanent covers were in place to contain fallout from atmospheric releases. Nearby crops of rice have been tested and reveal that caesium levels are one-quarter of the allowable limit. That means there is Fukushima rice for sale. Yum.

The worst news from Fukushima is that run-off of contaminated water into the sea was profuse and well above allowable levels of radionuclides. Although storage tanks for contaminated water were eventually erected, they began leaking in 2013. In addition to this is the more than 10,000 cubic meters of “slightly” contaminated water purposely released into the sea by Japan. This was a deal with the devil. They had to release less-contaminated water in order to make room for storing highly-contaminated water.

All sorts of new technology has been quickly developed by innovators eager to help Japan clean-up radioactive water quicker and more effectively. The gringa finds it sad how catastrophe inspires innovation. But I won’t knock it. Better to be desperate and have options than to be desperate and hopeless.

Concrete panels were constructed to prevent further leakage of contaminated water into the harbor surrounding Fukushima. These were later reinforced with steel shielding that extends one kilometer through rock strata. Testing of harbor waters in 2013 indicate that contamination levels are below acceptable standards. But is this good news? Who decides what is safe when it comes to contamination?

When it comes to interpreting contamination results for the harbor, Japan refers to the World Health Organization’s (WHO) standard for drinking water. The harbor surrounding Fukushima tests consistently lower for caesium contamination that the WHO requires for safe drinking water. Sounds pretty safe to me. But what about the fish and stuff? Can you eat what you catch?

The gringa thinks so. You see, prior to 2012 the Japanese national standard was for food sources not to exceed 500 Bq/kg of caesium contamination. After the disaster, this standard was dropped to 100 Bq/kg. What this means is that although they dropped the measurement standard they raised the standard for expectations. In order for fish caught off of Japan’s shores to be eligible for sale and dining pleasure, they have to test for less caesium now than before the disaster. And what do the fish say?

Within the months immediately after the disaster, more than 50% were too contaminated to eat. By the summer of 2014 things had changed dramatically. In about 3 years 99.4% of fish caught in the harbor surrounding Fukushima were safe to eat. Not bad, Japan, not bad.

But what about the doom and gloom reports about a wave of sea-borne Fukushima radiation that is finally reaching the shores of other nations? Well, first keep in mind that there are pre-existing levels of caesium radiation in the earth’s oceans. That would be the caesium-137 isotope contamination caused by nuclear weapons testing decades ago. Thanks, United States. 

But there is another caesium isotope, #134, floating around the Pacific. It can only have originated from Fukushima. The good news is that instead of having a half-life of 30 years, like #137, it only sticks around for about 2 years. But here it is 2017, 5 years after the disaster. Why is it still floating around in the Pacific? Well, to understand that you have to understand what half-life means. 

Having a 2-year half-life doesn’t mean that #134 will disappear or become non-radioactive in 2 years. It means that it takes 2 years for it to lose half of its radioactive value. So, let’s do the math:

  • 5 years ago # 134 is full strength
  • 3 years ago #134 is half strength
  • 1 year ago up to present #134 is one-quarter strength

But is the Pacific Ocean deadly? The Environmental Protection Agency (EPA) has regularly tested and monitored west coast waters, fully aware of the potential for deadly radioactivity due to Fukushima. The results of Fukushima radiation off the coast of California average to about 2 Becquerels per cubic meter. 

Since 7400 becquerels per cubic meter are the standard for safe drinking water, it seems California beach bums are safe. Even if a beach bum stays in the water non-stop for an entire year, their radiation exposure would be about the same as sitting for an x-ray at the dentist. So surf at your pleasure, beach bums.

So what does all of this mean? The worst man-made/natural combo disaster a human could imagine occurred 5 years ago. Amazingly enough, human ingenuity was up to the task. Fukushima is not going to kill the planet. And according to the latest findings recovered by robotic explorers, Fukushima will most likely be officially de-commissioned. Now who is inspired to become a scientist?


World Nuclear Organization

International Atomic Energy Agency

IFL Science

Image Credit: Suffolk University Blogs

Video Credit: New Scientist

Holding Time In Your Hands

What, exactly, is time? A dictionary might define time as continued progress through existence including events from the past, present and future. Or, it might describe time as a form of measurement. But either way, time is not physical. You know, meaning that it has no mass. In other words, it’s not matter that you can hold in your hands, right? Um, the gringa says prepare to have your minds blown. Physicists have gone and done it again. They have created a time crystal. What the heck?

How is a crystal time? Have you ever looked at a crystal under a microscope? Well, check out these images depicting different crystals under a microscopes:

What interests physicists in crystals and how they can be seen as “time” are the repeating patterns and symmetry, called lattices. What is even more interesting is that sometimes crystals will repeat a pattern in several direction yet opt out of other directions. Then there is the curious thing scientists call “symmetry breaking”. That is when there is disruption in a crystal’s spatial symmetry. The reason these unexpected occurrences happen is because a crystal doesn’t exert the same amount of energy in expanding and forming itself in those areas of anomalies.

In case you didn’t catch that “exert the same amount of energy” phrase, let the gringa draw your attention to that. Because that is the most amazing thing about crystals. Because they use energy to grow, a crystal is not just some dead lump of rock. It’s actually a living organic object. Granted, it’s at the lowest rung of the ladder where energy state beings exist, but, in a sense, a crystal is very much “alive”. But what’s that got to do with time?

Well, if a crystal’s physical aspect of symmetry can be seen and disrupted, albeit with a microscope, physicists want to know if a crystal’s temporal symmetry can be made manifest. In other words, convert time into a form of matter that can be touched, seen or held in the hand. Say what?!! Yeah, we’re not talking watch or clock here. We are talking the real, ambiguous, invisible concept of TIME blowing all of our minds by becoming visible and physical.

According to physicists, it’s already been done. The concept is to arrange a bunch of ions in a ring. Then they need to be cooled to bring their energy down to the lowest state possible. Theoretically, this will result in an unbroken ring of ions that are perfectly still.

Now, if the symmetry of the ring is broken, time is disrupted. That is done by rotating the ring. A turn. Kind of like how an orbit around a star marks time for a planet. But, with a crystal, the energy of this rotation can’t be extracted. It has to be conserved in order for temporal symmetry to occur, meaning time repeating itself in consistent cycles. Now, this is the theory. It sounds neat and tidy. Real life is not so simple.

When breaking things down to the quantum level, scientists find that time kind of doesn’t exist. The quantum world doesn’t care about time. When ions are cooled down in a ring on the quantum level, instead of being stationary they spin around and interact. The gringa supposes being friendly in the quantum world is more important than worrying about whether or not you’re late for a meeting. 

So, these cooled, social quantum particles kind of smear themselves about throughout space, willy-nilly, where ever they please. But scientists have discovered that certain things can provoke certain actions, allowing scientists to predict where a quantum particle might show up. This is called “Anderson Localization”, a discovery made in the 1950s.

Scientists today have discovered a particular chain of quantum particles that stick together in their ring pattern. These particles have a magnetization that can be affected by lasers to create certain rates of oscillation. This allowed scientists to measure rates of interaction between the spinning crystals. The scientists zapping these magnetized crystals left them alone to evolve on their own for awhile. They discovered that interactions began occurring at double the rate as before. Because there was nothing driving the particles to interact, since they were being left alone, the only explanation then was that the symmetry of time had been broken. Thus, a time crystal had been created.

It sounds like a lot of hoo-hah to the gringa. What’s the point? What does this mean? Does it have any usefulness? It doesn’t even sound like any of this makes sense. Maybe understanding the properties of this laser affected crystal will help the dear reader and the gringa understand the significance.

  • Changing the frequency of the laser did not change the frequency of the time crystal (remember, all energy beings, humans included, emanate a frequency, including crystals)
  • The crystal’s patterns do not repeat in space, but in time.
  • Once zapped with the laser, the crystals remain in perpetual motion yet contain no energy, which violates one of the fundamental law of physics. Thus time crystals are matter with no energy equilibrium (you know that old physics rule about for every action there is an equal and opposite reaction). Think of it like someone coming along and giving you a push in a swing and you never stop going back and forth.

So, on its most basic level, a time crystal is a form of matter that contains movement that is created without energy. The hope among scientists is that time crystals can become a never-ending energy source and the energy of time crystals can be harvested to power quantum computers. The gringa thinks, then, that “time” crystal is a misleading name. It should be something related to the perpetual energy aspect. Something like “crystal dynamo”. But nobody asked me.

The gringa would really appreciate it, however, if she could use one to power her air conditioner during the Gulf Coast summer season. My electric bills are KILLING me!


Technology Review

Popular Mechanics

APS Physics



IFL Science

images:  Xfoor News


K Glyphics

Video Credit:  Seeker

Climate Change, Laundry & A/C

Many people interested in climate change may think this is a new phenomena brought on by global population expansion, increased use of technology, higher agricultural demands ravaging the Earth’s ecosystems and increased usage of fossil fuels. The truth is this has been going on for about two hundred years. Yep, since the beginning of the industrial era.

When factories began firing up their furnaces in the early 1800s, long before fossil fuels had really made their mark, the continents and oceans of the Earth began warming. Scientists can detect changes that far back as they study ice samples from the Arctic. And it’s not only ice cores that reveal this tragic timeline. Australian researchers have pored over 500 years’ worth of data collected from tree rings and coral in addition to the ice core studies.

The gringa thinks it’s safe to say that scientists from 200 years ago were probably laughed at by their peers for doing such silly and useless things as recording climate temperature measurements. I’m sure they never dreamed that today they would be considered pioneering heroes. Without their foresight and dedication we would not know just how long we humans have been spitting in the face of the one and only planet we can call home.

As early as 1830 increased greenhouse emissions were already causing the temperatures of tropical seas to creep upward. The Northern Hemisphere began to experience higher than average climate temperatures around the same time. At first, the scientists of that era thought this was a natural cycle. They believed that after a period of volatility upon Earth where volcanic ash and dust particles had caused global cooling effects that it was only natural for things to bounce back the other direction.

They had no idea that what had happened millennia ago was not the catalyst. They were clueless that they were witnessing the onset of a human induced global catastrophe that would culminate hundreds of years later. No one was sounding any alarm bell. The factories were being erected as fast as manufacturers had the cash to expand. As industry grew, individual wealth grew. It soon became every person’s dream to own a car and zip about willy-nilly just for the sake of being seen. Little has changed since 1830. Even though we know we are killing our planet (and, hence, ourselves), industry still expands and consumers are still obsessed with consuming and being seen with their latest procurement so that everyone knows they have “arrived”.

In such a state of smug self-satisfaction we humans do not like to be reminded that we should, rather, trade in that latest state-of-the-art washing machine for a non-electric hand-crank model. It is beneath an ambitious individual’s self-worth to be expected to toss out an electric dryer and opt for grandma’s tried and true method of wringing out the wet laundry and hanging it out on the line. As for surviving without air conditioning and heating, surely you jest. Oh, yeah, sure, previous generations got by but certainly such a primitive lifestyle should not be expected by an advanced civilization like this current generation of humans. After all, with global warming who can survive such temperatures? Oh, but you see, your air conditioning is also contributing to the problem that you want relief from. We seem to be caught in a catch 22. Whatever shall we do?

So, who wants to join the gringa in the slow, very ungraceful transition to an off the grid lifestyle? Are there enough people in the world for such sacrifices to even matter? The gringa can’t say. I only know that on Tuesday my non-electric hand-crank washing machine arrived and I have committed to not replacing my slowly dying electric dryer with an equivalent. The caveman thinks I’m mad but I kindly remind him that he is, after all, a caveman. Such lifestyle changes should suit him perfectly.

I still don’t know what to do about air conditioning. When I’m home alone I am quite happy with 80 degrees Fahrenheit. I can even manage to handle 85 with the right incentives, no clothes and plenty of ice water and a splash of beer. Despite living in the incredibly warm climate of the Texas Gulf Coast, I, personally, can get by with using the A/C only during the hottest parts of the afternoon in June, July and August. But whenever the caveman or one of our demanding, unruly, but adorable children or grandchildren are here, they scream, “Do you even have the air conditioner ON?!”

I implore them to embrace nudity as an alternative but so far the gringa has gotten no support for a shift toward nude living as another aspect of living off the grid. I mean, after all, it would also create less demand in the laundry area, thus providing further conservation of water and energy.

I mean, doesn’t the dear reader see the strong correlation between climate change, laundry, and air conditioning? Perhaps that is the solution. If people living in warm climates would simply go nude, or at least opt for bikinis or sheer Romanesque body drapes, think of all of the textile and clothing factories that would no longer be necessary, close down and no longer contribute to human induced climate change. Think of all of those dresses and jeans and pajamas no longer contributing to fossil fuel emissions when shipping and trucking of apparel is no longer needed.

I do believe the gringa is on to something. Nudity could very well save the world. Unless, of course, you live in Siberia. But winter wear is a subject for another post.


Image Credit:



A Curious Green Partnership

With all of the terror related events that have recently occurred in France, one wouldn’t think that France and Iran would be synonymous with the word partnership. Well, the gringa tells her dear readers to think again. Once again the sophistication of the French people  and the deeply philosophical nature of Iranians have resulted in both nations magnanimously spanning cultural differences that should be an example for all of us to follow. We would do well to emulate their motives as well, committing to save this planet and the human race from extinction.

This month the Environment Minister of France, Segolene Royal, met with Iran’s equivalent of the same office, Massoumeh Ebtekar, leader of the Environmental Protection Organization of Iran. They have outlined a schedule of projects that should bloom to fruition by February of next year.

Both officials will be touring Iran for three days. Topping the list of places to visit in Iran is lake Orumiyeh in the northwest. This saltwater lake, the largest of its kind in Iran, is a UNESCO heritage site. Over the past twenty years it has shrunk by almost 90%. This has been caused by a combination of un-sustainable farming methods, the construction of dams and the effects of climate change.

They will be joined in their tour by influential businessmen from the energy industry representing companies that specialize in environmentally aware renewable energy. These companies focus on water conservation, minimizing the impact of pollution and designing structures that are energy efficient.  Of particular mention is the leader of the multinational company, Engie.

Engie’s claim to fame is that of an energy company that desires to make a difference throughout the world. Operating in the fields of electricity and natural gas, they seek to manage dwindling natural resources responsibly and create innovative technologies that could render use of non-renewable natural resources obsolete.

France chose to partner with Iran because they believe that the two nations are facing similar energy and climate challenges. Although French officials see this as a great opportunity for the two nations, French bankers are not so keen on the idea. It seems the financial movers and shakers in France have not caught up with the decision of July 2015 when the world lifted sanctions that had been upon the nation of Iran. That’s understandable considering that bankers are just trying to decipher the complicated mess of laws and rules that would govern a financial venture in Iran. The gringa totally understands wanting to cover your own patootie.

However, even if the environment department heads of France and Iran get impatient for funds to flow, the gringa trusts in the ingenuity and passion of the French to discover a solution. There has even been mention of turning to Italy for financing. But what exactly do they want to use all that money for?

The funding will be used to help each nation come into compliance with the decisions of the international climate accord that was signed in Paris by many nations last year. Paris and Iran want to work together to create two thriving green economies. The gringa wants to know just what the heck a green economy is.

Well, the United Nations has been using the term “green economy” since 1989 when a United Kingdom group of environmental economists wrote a blueprint presenting their case for sustainable development, or so one would think from the title of their work “Blueprint for a Green Economy”. The short tome actually contains no reference at all to what a green economy is. The world is left scratching its head as to the meanings of authors David Pearce, Anil Markandy and Edward B. Barbier.

It isn’t until, in 1991 and 1994, the same authors released sequels to their original greenless blueprint of green economies that mankind finally discovered what the heck they were trying to tell us. When all three are read together, these are the conclusions to be drawn:

  • By changing economies, countries can change the world’s climate condition for the better.
  • Purposeful action must be sponsored by world leaders to develop sustainable energy.
  • Governments must lead rather than wait on the private sector.
  • Economics and environmental policy must become intertwined in order to solve the problems of a global economy and entire world population threatened by the effects of climate change.

What forward thinking France and Iran are displaying. Their actions may very well be the catalyst for a shift in economic thinking and how countries approach climate change initiatives. It is not uncommon for a country to get an economic bail-out when suffering from a financial crisis. The movement of the future may very well be “green stimulus packages” offered by the United Nations as well as individual countries that can afford to help others. The gringa is feeling hopeful.


Image Credit: